
Homework 6: Sessions
For this homework, you will practice using conversational state in your web app by using
sessions in your ongoing GameDen project.

You will do this homework as a team; however, each member of your team will be responsible
for the completion of a particular task.

Step 1. Use sessions in your dynamic web page

For each game a user starts, you must store the state of the game in a session object. Thus, a
player should be able to play two separate instances of the same game using two separate
browsers. (If you have been storing game state using hidden input fields in the form, you must
change that.) The games should still store final results and other stats in the database.

All web pages must try to retrieve user info (e.g., name) from the session first. If the session
contains no such info, then the next step is to try to retrieve the info from the database. If user
info is found in the database, then that info should be stored in the session.

Submitting the user info form must store the entered info in a session as well as writing it to the
database.

Note that the above instructions set up the potential for a TOCTTOU (Time Of Check To Time
Of Use) error in the servlet because the database can be updated after the servlet loads the
session. You need not fix the error for this homework; however, you should be aware of it.

Don’t forget to synchronize accesses to the session.

Note that for this homework, the system will still support only one user.

For an example of that uses sessions, checkout this project:

https://utopia.cs.memphis.edu/course/comp7012-2013spring/examples/PingPong-Sessions/trunk/

IMPORTANT! Session caching may cause you problems. Both Tomcat and your web browser
cache session-related information. Clearing your web browser’s session info should take care of
most problems. Most browsers clear session info when quit/restarted. For Eclipse’s browser, it
seems that you must restart Eclipse to clear its session info (Annoying!). For good measure, I also
like to ensure that Tomcat clears its session info on restarts by including the context.xml file
from the above example in the META-INF/ folder.

Step 2. Submit (by tagging) your team’s submission

The following instructions are essentially the same as last time; only the tag name has changed.

Attention! Before performing this step, you must make sure that all team members have
committed their edits to the trunk in the repository.

Only one team member (the leader) performs the following.

First, you must fill out the README.txt file in your project’s trunk. The file should list which
team member performed each task (one team member per task).

To submit work in this course, you must tag it. Then, I will checkout the revision that you tagged
and grade it. By tagging, you tell me that you are done, and this is the version you want me to
grade.

The tag you must use for this homework is hw6 (case sensitive, no spaces).

To tag the current revision of your trunk as hw6, do as follows:

1. Go to the SVN Repository Exploring perspective in Eclipse.
2. In the SVN Repositories view, find the trunk folder that you want to tag.
3. Right-click on the trunk folder, and click Show History. This should open the History

view with a table listing the past commits to the trunk.
4. In the History table, right-click the newest revision (i.e., the one with the greatest revision

number), and click Tag from… This should open a Create Tag dialog.
5. Enter hw6 into the Tag field and optionally enter a log comment, then click OK. This

should create the tag!

To verify that tagging was successful, open the following URL in a web browser (replacing
YOUR_TEAM with the appropriate name):

https://utopia.cs.memphis.edu/course/comp7012-2013spring/teams/YOUR_TEAM/GameDen/tags/

You should see an hw6 folder, and within that folder should be src and WebContent folders
along with the README.txt file. Everyone’s HTML files should be in the WebContent folder.

