
 1 

COMP/EECE 7012/8012 

Exam 1 
Spring 2013 

 

 

 

Name: _____________________________________________________________________ 

 

 

Rules: 

• No potty breaks. 
• Turn off cell phones/devices. 
• Closed book, closed note, closed neighbor. 

 

Reminders: 

• Verify that you have 9 pages of questions and 5 of figures. 
• Don’t forget to write your name. 
• Read each question carefully. 
• Don’t forget to answer every question. 

 

Additional Items: 

• For questions that involve writing code: 
o You may omit import statements. 
o You may omit exception-handling code. 

  



 2 

1. [10pts] Write HTML would create web page depicted in Figure 1. Your solution must include the 
following types of HTML elements (and no other types): !DOCTYPE, a (with href attribute), body, 
h1, head, html, img (with src attribute), li, p, title, ul. The link should go to http://acm.org/. Assume 
the image is in WebContent/images/kitty.jpg. 

 

 

  



 3 

2. [10pts] Consider the following scenario involving Subversion (SVN). Alice and Bob are both work-
ing on a shared project MyProj that is stored in an SVN repository. Bob does a checkout on the pro-
ject. What does SVN do when Bob issues the checkout command? 

 

 

 

Next, Bob edits the MyProj file Foo.java. Then, he does a commit. What does SVN do when Bob issues 
the commit command? 

 

 

 

Next, Alice does a checkout on MyProj. Then, Alice and Bob both edit Foo.java in parallel. Foo.java 
has over 100 lines of code. Alice edits a couple lines at the top of the file, and Bob edits a couple lines at 
the bottom of the file. Then, Bob does a commit. Finally, Alice does a commit. What does SVN do when 
Alice issues the commit command? 

 

 

 

What SVN command should Alice issue next and what would the result of the command be? 

 

 

 

 

 

 

After the previous command, what command should Alice issue? 

 

 

  



 4 

Imagine that the University of Memphis provides students with snacks (chips and a drink) during class 
and has a web app that students can use to order their snacks. Students go to a web page that presents 
them with the form depicted in Figure 2. By filling out and submitting the form, students can choose what 
flavor of drink and type of chips they will receive. After a student submits the form, he/she is presented 
with a page like that depicted in Figure 5, or in the event of an error, the error page in Figure 6.  

3. [5pts] Below is a list of the components that make up this web app. For each one, tell what part of an 
MVC architecture it belongs to. Put the full name of the part (i.e., do not just put “V”). 

 

______________________ An HTML page with the form in Figure 2 

 

______________________ A JSP for the order-summary page (see Figure 5) 

 

______________________ A JSP for the order-error page (see Figure 6) 

 

______________________ A plain old Java class that represents a snack order (see Figure 3) 

 

______________________ A plain old Java class for storing/retrieving snack order records (see Figure 4) 

 

______________________ A servlet class that receives requests from the Figure 2 form, uses the plain 
old Java classes (Figure 3 and Figure 4) to service the request, and responds using the JSPs (Figure 5 and 
Figure 6). 

 

4. [15pts] On the next page, reverse engineer the servlet class for ordering a snack. That is, write Java 
code that implements the servlet. 

• The order-summary JSP assumes that the request contains an attribute with the name “order” that 
maps to a SnackOrder object that contains the order info. 

• Note the JSP paths in Figure 5 and Figure 6. 

• Note the Java API excerpts in Figure 7. 

 

  



 5 

Write your answer to question 4 here. 

 

  



 6 

5. [8pts] Reverse engineer order-summary JSP (Figure 5). As in the previous question, assume that the 
request contains an attribute with the name “order” that maps to a SnackOrder object that contains 
the order info. 

 

 

  



 7 

E-commerce sites, like Amazon.com, commonly allow users to add items to a “shopping cart” while they 
browse. Then, when they’ve selected all the items they want, they can “check out” and purchase the items 
in their cart.  

Consider the Cart class excerpt in Figure 9 that implements shopping-cart functionality and the servlet 
doGet method in Figure 10 that removes the most expensive item from the cart. 

6.  [6pts] Based on the above code, describe a scenario in which a call to doGet removes an item from 
the cart that is not the most expensive item. (Hint: concurrency.) Make sure that your answer is thor-
ough and concise.  

 

  



 8 

7. [6pts] Rewrite the doGet method from Figure 10 to correct the error. I’ve started the method for you: 

protected void doGet(HttpServletRequest request, HttpServletResponse response) 
throws ... { 
 

  



 9 

8. [10pts] Given the TVGuide database in Figure 8, what would the result of the following query be? 

SELECT  
    `LastName`, `NetworkName` 
FROM 
    (`TVNetwork` INNER JOIN `TVShowNetwork` 
     ON `TVNetwork`.`NetworkID` = `TVShowNetwork`.`NetworkID`) 
INNER JOIN 
    (`Talent` INNER JOIN `TVShowCreator` 
     ON `Talent`.`TalentID` = `TVShowCreator`.`TalentID`) 
ON `TVShowNetwork`.`ShowID` = `TVShowCreator`.`ShowID` 
ORDER BY `NetworkName`, `LastName`; 

Fill the table below with your answer. Cross out any cells in the table that you do not need. Don’t forget 
to label the columns. 

    

    

    

    

    

    

 

 

  



 10 

Figures 

 

Figure 1. Example web page. 

 

  

Name: ______________________________________ 



 11 

 

<form method="post" action="orderSnack.do"> 
ORDER SNACK HERE 
<br> 
Drink flavor: <input type="text" name="drink"> 
<br> 
Type of chips: <input type="text" name="chips"> 
<br> 
<input type="submit" value="Submit"> 
</form> 

Figure 2. Snack-order form. 

 

 

public class SnackOrder { 
 private String drink; 
 private String chips; 
 public void setDrink(String s) { drink = s; } 
 public void setChips(String s) { chips = s; } 
 public String getDrink() { return drink; } 
 public String getChips() { return chips; } 
} 

Figure 3. Java class that represents a snack order. 

 

 

public class SnackOrderDao { 
 /** 
  * Returns newly created order number or -1 on error. 
  */ 
 public int insertOrder(SnackOrder order) { 
  ... 
 } 
 
 ... 
} 

Figure 4. Java class for storing/retrieving snack-order records. 

 

  



 12 

 

 
Figure 5. WEB-INF/orderSummary.jsp 

 

 
Figure 6. WEB-INF/orderError.jsp 

  



 13 

• Class HttpServlet 
o Annotation to declare URL pattern: @WebServlet 
o protected void doGet(HttpServletRequest req, HttpServletResponse resp) 
o protected void doPost(HttpServletRequest req, HttpServletResponse resp) 
o protected void service(HttpServletRequest req, HttpServletResponse resp) 

• Interface HttpServletRequest 
o Object getAttribute(String name) 
o String getParameter(String name) 
o RequestDispatcher getRequestDispatcher(String path) 
o HttpSession getSession() 
o void setAttribute(String name, Object o) 

• Interface HttpServletResponse 
o PrintWriter getWriter() 

• Interface RequestDispatcher 
o void forward(ServletRequest request, ServletResponse response) 

• Class PrintWriter 
o void print(String s) 
o void println(String x) 

• Interface HttpSession 
o Object getAttribute(String name) 
o boolean isNew() 
o void setAttribute(String name, Object value) 

Figure 7. Java API excerpts. 

 

 

 

Figure 8. TVGuide database. 

  

NetworkID* NetworkName*

111" CBS"

666" Comedy"Central"

999" Fox"

ShowID* NetworkID*

2222" 999"

5555" 666"

8888" 999"

TVNetwork* TVShowNetwork*

ShowID* ShowName* Seasons*

2222" The"Simpsons" 24"

5555" Futurama" 7"

8888" Firefly" 1"

TVShow*

TalentID* LastName* FirstName*

333333" Groening" MaD"

777777" Whedon" Joss"

Talent*

ShowID* TalentID*

2222" 333333"

5555" 333333"

8888" 777777"

TVShowCreator*



 14 

 

Class Cart 
• private Item[] items 

o Array of items in the cart. Not sorted in any particular way. 
• public int findMostExpensive() 

o Returns the index of the most expensive item in the cart, or -1 if the cart is empty. 
• public void removeItem(int i) 

o Removes the item at index i from the cart. 

Figure 9. Cart class excerpt. 

 

 

protected void doGet(HttpServletRequest request, HttpServletResponse response) 
throws ... { 
 HttpSession session = request.getSession(); 
 ... 
 Cart c = (Cart) session.getAttribute("cart"); 
 int x = c.findMostExpensive(); 
 if (x != -1) { c.removeItem(x); } 
 ... 
} 

Figure 10. Servlet doGet method that removes the most expensive item from the cart. 


