
Homework 6: MVC Model Associations

For this homework, you will further refine your team’s web app by adding associations between some of
your previously created model classes and by updating your seed data and actions/views to use these
associations. Additionally, you will continue to practice with the version-control system, Git.

You will do this homework as a team; however, each member of your team will be responsible for the
completion of a particular task. Each team member will choose one task from the list below to complete.
All team members must do a different task. If your team has only three members, then ignore Task 4.

The Tasks
Similar to previous homeworks, there will be four tasks (Tasks 1 through 4); however, this time the tasks
are more inter-related. Each task will have the same five parts:

1. Add validations and unit tests to the model class that has none.
2. Add two model associations.
3. Add seed data that uses the associations.
4. Update views/controllers to make use of the associations.
5. Update the home page to link to your newly created pages.

Part 1: Add validations and unit tests

Figure 1 (below) depicts a class diagram with the previously created classes and their associated tasks. In
Homework 4, you created validations and unit tests for one the model classes for your task. In this
homework, you must add validations and unit tests for the other model class.

In particular, add at least one validation per attribute of the class. Also, write at least one unit test for each
attribute that checks that the attribute's validation can catch an invalid value. The choice of validations
and tests is largely up to you, but choose something sensible (i.e., not too weird) and have at least 3 types
of validation overall (i.e., two attributes may have the same type of validation).

Part 2: Add two model associations

Implement two one-to-many associations, as shown in Figure 1 (see below). You must create the
associations labeled with your task number. Your Rails model associations must match the class diagram
exactly—including the role names on the association ends.

Part 3: Add seed data

Add seed data as follows. You must have at least three records from the “one” side of each of your
associations, and each of those records must be associated with at least two records from the “many” side
of the association. Thus, for a given association, there will need to be a minimum of 9 records (3 from the
one side + 2 + 2 + 2 from the many side).

In creating the seed data, you may need to coordinate with your teammates to come up with sensible data
given their constraints. To keep the total number of seed objects manageable, it is OK for you to “share”
model objects with teammates in the seeds file. That is, you may count the same model object toward the
objects required for multiple associations.

Part 4: Update views/controllers

Using your newly created associations, you must update views/controllers as per the task-specific
requirements below:

Task	1:	
• Update the Planet show page such that it includes a table listing all the Continent objects that the

Planet object has. The table should be inserted below the usual Planet show info and be styled like
the table in the Continent index page.

• Update the Continent index page such that a new column is added to the table. The column should
be titled “Homeworld”, and it should display the name attribute of the Planet object to which the
Continent belongs.

• The Continent new/create and edit/update pages should now include a dropdown field
(collection_select) that allows the user to select the Planet object to which the Continent
object will belong. The text for each item in the dropdown should be the name attribute of the
Planet. In the edit form, the dropdown field should select the Continent’s current Planet by
default.

Task	2:	
• Update the Country show page such that it includes a table listing all the City objects that the

Country object has. The table should be inserted below the usual Country show info and be styled
like the table in the City index page.

• Update the City index page such that a new column is added to the table. The column should be
titled “Country”, and it should display the name attribute of the Country object to which the City
belongs.

• The City new/create and edit/update pages should now include a dropdown field
(collection_select) that allows the user to select the Country object to which the City
object will belong. The text for each item in the dropdown should be the name attribute of the
Country. In the edit form, the dropdown field should select the City’s current Country by default.

Task	3:	
• Update the Owner show page such that it includes a table listing all the Building objects that the

Owner object has. The table should be inserted below the usual Owner show info and be styled
like the table in the Building index page.

• Update the Building index page such that a new column is added to the table. The column should
be titled “Manager”, and it should display the first_name and last_name attributes of the Owner
object to which the Building belongs.

• The Building new/create and edit/update pages should now include a dropdown field
(collection_select) that allows the user to select the Owner object to which the Building
object will belong. The text for each item in the dropdown should be the last_name attribute of
the Owner. In the edit form, the dropdown field should select the Building’s current Owner by
default.

Task	4:	
• Update the Park show page such that it includes a table listing all the Statue objects that the Park

object has. The table should be inserted below the usual Park show info and be styled like the
table in the Statue index page.

• Update the Statue index page such that a new column is added to the table. The column should be
titled “Park”, and it should display the name attribute of the Park object to which the Statue
belongs.

• The Statue new/create and edit/update pages should now include a dropdown field
(collection_select) that allows the user to select the Park object to which the Statue
object will belong. The text for each item in the dropdown should be the name attribute of the
Park. In the edit form, the dropdown field should select the Statue’s current Park by default.

Part 5: Update the home page
Update your project’s home page so that it now lists your name (no hyperlink) followed by the following
two links:

Task	1:	
• “Planets” linking to Planet index page.
• “Continents” linking to Continent index page.

Task	2:	
• “Countries” linking to Country index page.
• “Cities” linking to City index page.

Task	3:	
• “Owners” linking to Owner index page.
• “Buildings” linking to Building index page.

Task	4:	
• “Statues” linking to Statue index page.
• “Parks” linking to Park index page.

How to submit your team’s work
Before you can submit, all team members must have merged their code into the master branch and pushed
the updates to GitHub. If a team member does not complete his/her work on time, you may submit
without his/her contribution.

To submit your team’s work, you must “tag” the current commit in the master branch:

$ git tag -a hw6v1 -m 'Tagged Homework 6 submission (version 1)'
$ git push origin --tags

To grade your work, I will check out the appropriate tag, and run it on my machine.

Note that if for some reason you need to update your submission, simply repeat the tagging process, but
increment the version number (e.g., hw6v2, hw6v3, hw6v4, etc.).

Figure 1. Model class diagram with task assignments.

has

Planet

name : string
color : string
nasa_data : string
diameter : integer

Continent

name : string
area : integer
population : integer
description : text

1
homeworld

Task 1

*
landmass

has

Statue

name : string
date_created : string
medium : string
weight : integer

Park

name : string
park_type : string
year_created : integer
area : integer

*
statue

Task 4

1
park

Building

name : string
email : string
building_type : string
stories : integer

City

name : string
website : string
motto : string
population: integer

*
building

Task 3

1
city

has

Owner

first_name : string
last_name : string
ssn : string
age : integer

Country

name : string
info_hotline : string
world_category : string
year_formed : integer

* property

1 manager

* artwork

1 location

has

has

Task 1

Task 2Task 3

Task 4

* country

1 continent

has

* city

1 country

has

*
citizen

Task 2

1
home

has

Task 2

Task 1

Task 3

Task 4

Task 1

Task 2Task 3

Task 4

