
Multiple-Choice Questions:

1. True or false? Generally, in practice, developers exhaustively test software.

a. True

b. False

2. True or false? All “real” software contains bugs.

a. True

b. False

3. Which of the following is not a desirable quality of a unit test?

a. No I/O

b. Fast

c. Non-deterministic

d. Tests one property

e. None of the above

4. Which of the following is true of exhaustive testing?

a. Generally infeasible in practice

b. Tests all possible inputs

c. Typically results in an intractably large set of test cases even for small programs

d. All of the above

e. None of the above

5. Which of the following is not a difference between unit tests and integration tests?

a. Unit tests should not perform I/O, whereas integration tests may do so

b. Unit tests should be deterministic, whereas integration tests may have non-determinism

c. Unit tests should be fast (less than half a second), whereas integration tests may be slower

d. Unit tests must be black-box tests, whereas integration tests must be white-box tests

e. None of the above (they are all differences)

6. Which of the following is not a difference between black-box and white-box testing?

a. Black-box tests are based only on the interface of a component, whereas white-box tests are
based on the implementation

b. Black-box tests often focus on boundary cases, whereas white-box tests tend not to

c. White-box tests often aim to achieve particular levels of code-coverage, whereas black-box
tests do not

d. White-box tests are made by programmers, whereas black-box tests are made by ordinary us-
ers

e. None of the above (they are all differences)

7. In __________, you hook everything together and treat the system like a black box.

a. test-driven development

b. system testing

c. unit testing

d. integration testing

e. None of the above

Solutions:

1. b

2. a

3. c

4. d

5. d

6. d

7. b

Problem:

Consider these code fragments.

a.
b.
c.
d.
e.
f.
g.
h.
i.
j.

Using the above fragments, create a functional test for the “index” page of a car-themed web app. The test
should make sure (1) that the HTTP response does not report an error, (2) that the correct ERB is rendered
(index.html.erb), and (3) that the call to Car.all in the controller, which sets the @cars instance vari-
able, does not fail and return nil. Note that your answer should use only 6 of the above fragments.

Solution:

Problem: Draw a control flow diagram for this function. Label each edge with an uppercase letter.

int funWithNumbers(int a, int b) {
 if (a > b) {
 while (a >= b) {
 a -= 1;
 b += 1;
 }
 } else {
 b += a;
 }
 return b;
}

Solution:

Problem: Fill in the table below with a test suite that provides path coverage of the code from the previ-
ous question. Cover no more than 2 iterations of the loop. In the covers column, list the relevant labeled
items in your CFG that each test case covers. If there is some part of the coverage that is impossible to
cover, then list it in the covers column, and put “N/A” in the associated x and y cells. Some cells in the
table may be left blank.

Input Covers x y

Solution:

Problem: Draw a control flow diagram for this function. Label each node in the graph with a capital let-
ter, and label each edge with a lowercase letter.

int blammo(int u, int v) {
 int t;
 while (v != 0) {
 t = u;
 u = v;
 v = t % v; // Recall that % computes remainder of t/v
 }
 if (u < 0) { return –u; }
 return u;
}

Solution:

Problems:

2. Fill in the table below with a test suite that provides statement coverage of the “blammo” code. In the
covers column, list the relevant labeled items in your CFG that each test case covers. Some cells in
the table may be left blank.

Input
Covers u v

3. Fill in the table below with a test suite that provides path coverage of the “blammo” code. Cover no
more than 1 iteration of the loop. In the covers column, list the relevant labeled items in your CFG
that each test case covers. Some cells in the table may be left blank.

Input Covers
u v

Solutions:

1.

2.

Problem: Draw a control-flow graph for the following function. Label each edge in the graph with an
uppercase letter.

Solution:

Problem: Fill in the table below with a test suite that provides path coverage of the min_of_three
function from the previous question. In the covers column, list the relevant labeled edges in your CFG
that each test case covers. Some cells in the table may be left blank.

Input Expected
Output Covers x y z

Solution:

Consider the following control-flow graph for a gcd function in answering the questions below.

H

Problem: Fill in the table below with a test suite that provides condition coverage of the gcd function
(see control-flow graph above). In the Covers column, list the relevant labeled edges in the CFG that each
test case covers. Some cells in the table may be left blank.

Input Expected
Output Covers x y

Problem: Fill in the table below with a test suite that provides path coverage of the gcd function (see
control-flow graph above). In the Covers column, list the relevant labeled edges in the CFG that each test
case covers. Some cells in the table may be left blank. You need only cover executions that involve 1 iter-
ation of the loop.

Input Expected
Output Covers x y

Solution: Condition Coverage

Solution: Path Coverage

Consider this binary-search function and its associated control-flow graph.

True

True

True

False

False

False

Problems:

Consider the following test cases for the binary_search function.

 array key imin imax
a. [1] 0 0 0
b. [1] 1 0 0
c. [1] 2 0 0
d. [1, 2, 3] 1 0 2
e. [1, 2, 3] 2 0 2
f. [1, 2, 3] 3 0 2
g. [1, 2, 3] 1 2 0
h. [1, 2, 3] 2 2 0
i. [1, 2, 3] 3 2 0

1. Select tests from the above to create a test suite that provides statement coverage of the bina-
ry_search function. Your suite should contain the minimum number of tests to provide the cover-
age.

2. Select tests from the above to create a test suite that provides condition coverage of the bina-
ry_search function. Your suite should contain the minimum number of tests to provide the cover-
age.

3. Select tests from the above to create a test suite that provides path coverage of the binary_search
function. Cover only paths that contain one loop iteration or fewer (i.e., no path should enter the loop
more than once). Your suite should contain the minimum number of tests to provide the coverage.

Solutions:

1.

2.

3.

