
Problem: Match the design pattern to the situation to which you should apply it.

 ¢ Your application needs to generate HTML files
(from scratch).

Builder ¢ ¢
Your program must support switching among
several different email libraries, but each one has
a slightly different interface.

Memento ¢ ¢ You want to let users create and run macros in-
side your application.

Façade ¢ ¢
Sending an SMS message requires lots of big,
ugly code, involving connection, message, and
other objects.

Adapter ¢ ¢ You want your application to save its state so that
if it crashes, then it can auto-recover.

Interpreter ¢ ¢
Your program has to create and configure some
big, ugly record objects before inserting them
into a database.

Observer ¢ ¢
Your program has to support replication. You
need a way for the program to save its state so
the program can be copied to other servers.

 ¢
Your company already implemented a compo-
nent that almost implements the interface that
you need, but not quite.

Solution:

Problem: Imagine that you are the creator of an “intelligent” kitchen system, RoboChef, that can actually
control different kitchen appliances (e.g., ovens, choppers) to prepare food. Initially, you implemented
RoboChef to use only Electrolux gas ovens. Here is an excerpt of your current software design:

Note that the Electrolux Company provided the software interface for controlling the gas oven (Electro-
luxGasOven), and you created the intelligent decision-making part (RoboChef). As your next step, you
would like your system to support different types of ovens other than Electolux gas ones. For example,
Maytag and Whirlpool each provide their own software interfaces for their ovens:

Update your current software design to allow easy switching between oven-control systems. Your design
must apply the adapter pattern.

Draw a class diagram for your design.

RoboChef(

…(
…(

ElectroluxGasOven(

…(

+heat(howHot:(Temperature,(
((((((((((((howLong:(Time)(
…(

1(
Econtrols(

MaytagMicrowave-

…-

+cook(seconds:-Integer,-
------------power:-Integer)-
…-

WhirlpoolElectricRange-

…-

+bake(degrees:-Integer,-
------------@me:-Time)-
…-

Solution:

Problem: For each pattern below, draw a line from the pattern to its definition.

Indirection ¢ ¢ Identify points of instability and create a stable
interface around such points.

Low coupling ¢ ¢
Assign a knowing responsibility to the class that
has the information necessary to fulfill the re-
sponsibility.

Information Expert ¢ ¢ Assign responsibilities so that the strength of
connection between objects stays low.

Protected variations ¢ ¢ Assign responsibilities so that an object’s re-
sponsibilities are well focused.

Creator ¢ ¢
One class should have the responsibility to
make instances of another if it “contains”, rec-
ords, or closely uses the other class.

High cohesion ¢ ¢
To decouple two classes, assign the responsibil-
ity of mediating between the two to an interme-
diate object.

Solution:

Problem: Imagine that you are the creator of an “intelligent” autopilot system that can actually fly and
land real airplanes (wow!). Initially, you implemented your system to fly small Cessna airplanes. Here is
an excerpt of your current software design:

Note that the Cessna Aircraft Company provided the software interface for controlling the plane (Cess-­‐
naControls), and you created the intelligent decision-making part (IntelligentPilot).

As your next step, you would like your system to support different types of airplanes other than Cessnas.
For example, Boeing and Airbus each provide their own software control interfaces:

Update your current software design to allow easy switching between control systems. Your design must
apply the adapter pattern.

Draw a class diagram for your design.

What effect did your new design have on the coupling between class IntelligentPilot and class Cess-­‐
naControls.

a. Reduced their coupling

b. Increased their coupling

c. Had no effect on their coupling

IntelligentPilot*

…*
…*

CessnaControls*

…*

+doBarrelRoll()*
…*

1*
7controls*

BoeingCockpitControl.

….

+barrelRollNow().
….

AirbusCtrl.

….

+engageBarrelRoll().
….

Solution:

Problem: Consider the following design for a document-editing system. The Document class represents a
document, and Document objects know how to print themselves using a PostscriptPrinter object.

However, there are other types of printers that a document might want to print itself on, but these printers
have slightly different interfaces than the Postscript printer, for example:

Using the adapter pattern, refactor the design, so that the different types of printers can be easily
swapped in and out.

Draw a design class diagram for your design.

Document)

…)

…)

PostscriptPrinter)

printPS(doc):)PostScriptDoc))
…)

…)printer)

*)

LinePrinter(

doPrint(doc(:(TextData)(
…(

…(

ThreeDPrinter(

renderImage(img(:(Model3D)(
…(

…(

Solution:

Problem:

Match the design pattern to the situation to which you should apply it.

Observer o

Builder o

Adapter o

Mediator o

Memento o

Interpreter o

Facade o

 o Your Pac-Man program needs to listen for presses
of the arrow keys and to update Pac-Man’s position
in the maze accordingly.

o Your program has to create and configure some
big, ugly record objects before inserting them into a
database.

o Your GUI interface has many interrelated buttons
and other widgets (e.g., such that when each button
is pressed many other widgets must be updated).

o You want your application to save its state so that if
it crashes, then it can auto-recover.

o Your program must support switching among sev-
eral different email libraries, but each one has a
slightly different interface.

o You want to let users create and run macros inside
your application.

o Sending an SMS message requires lots of big, ugly
code, involving connection, message, and other ob-
jects.

Solution:

