
Homework 5: Sessions and Unit Tests
For this homework, you will practice (1) using sessions to implement conversational state and (2)
using unit tests to test your model classes.

You will do this homework as a team; however, each member of your team will be responsible
for the completion of particular tasks.

Step 1. Add conversational state

Each page must keep a count of the number of times that the user has visited that page during the
current session. To implement these features, create a controller class that has a counter for each
servlet. When a user first requests a servlet (i.e, at the beginning of a session), create an instance
of the counters class, increment the appropriate counter, and store the instance in a session object.
When the user requests subsequent servlets, each servlet should increment the appropriate
counter. At the top of each page returned by a servlet, print the message “Servlet hit #: 99”, where
99 is the current count.

Each team member should implement the above for the servlets/JSPs that they created in hw3.

Don’t forget to synchronize accesses to the session.

For an example of that uses sessions, checkout this project:

https://utopia.cs.memphis.edu/course/comp4081-2013fall/examples/pingpong-sessions/trunk/

IMPORTANT! Session caching may cause you problems. Both Tomcat and your web browser
cache session-related information. Clearing your web browser’s session info should take care of
most problems. Most browsers clear session info when quit/restarted. For Eclipse’s browser, it
seems that you must restart Eclipse to clear its session info (Annoying!).

Step 2. Create unit tests

Add black-box unit tests for each of the following model classes, dividing the work among your
team by task:

• Task 1: Test class User
• Task 2: Test class Movie
• Task 3: Test class PopularityCalculator
• Task 4: Test class MovieScore
• Task 5: Test class PlayList
• Task 6: Test class Review

Thoroughly exercise each classes features. For a class with only getter/setter methods, this might
involve loading an instance of the class up with “typical” values, and testing to see that the getter
methods return the appropriate values. For a class that computes something, test typical and
boundary cases.

Step 3. Submit (by tagging) your team’s submission

The following instructions are essentially the same as last time; only the tag name has changed.

Attention! Before performing this step, you must make sure that all team members have
committed their edits to the trunk in the repository.

Only one team member (the leader) performs the following.

First, you must fill out the README.txt file in your project’s trunk. The file should list which
team member performed each task (one team member per task).

To submit work in this course, you must tag it. Then, I will checkout the revision that you tagged
and grade it. By tagging, you tell me that you are done, and this is the version you want me to
grade.

The tag you must use for this homework is hw5 (case sensitive, no spaces).

To tag the current revision of your trunk as hw5, do as follows:

1. Go to the SVN Repository Exploring perspective in Eclipse.
2. In the SVN Repositories view, find the trunk folder that you want to tag.
3. Right-click on the trunk folder, and click Show History. This should open the History

view with a table listing the past commits to the trunk.
4. In the History table, right-click the newest revision (i.e., the one with the greatest revision

number), and click Tag from… This should open a Create Tag dialog.
5. Enter hw5 into the Tag field and optionally enter a log comment, then click OK. This

should create the tag!

To verify that tagging was successful, open the following URL in a web browser (replacing
YOUR_TEAM with the appropriate name):

https://utopia.cs.memphis.edu/course/comp4081-2013fall/teams/YOUR_TEAM/movieclub/tags/

