
Homework 4: Database Backend
For this homework, you will practice working with databases by adding a database backend to the
web app that you created in the last homework.

You will do this homework as a team; however, each member of your team will be responsible
for the completion of a particular task.

Step 0. Copy the Connector/J library into Tomcat’s lib folder

The Connector/J library contains a JDBC (Java Database Connectivity) driver for MySQL. You
can download a copy of the library from me:

http://www.cs.memphis.edu/~sdf/comp4081/resources/mysql-connector-java-5.1.25.jar

A copy of this jar file must be placed in the lib/ folder of your Tomcat installation; otherwise, the
user login functionality below will not work.

Step 1. Add database backend to movieclub

You will continue working on the movieclub web app by adding MySQL-based persistence to
the dynamic web pages. For an example of a Java EE web app with a database backend, checkout
this example:

https://utopia.cs.memphis.edu/course/comp4081-2013fall/examples/booksrus-db/trunk/

Each team member must complete one of the tasks defined below. Each of the tasks will involve
working with a MySQL database that I’ve created for your team. You can find the database
connection information in src/main/webapp/META-INF/context.xml.

The tasks will also refer to some new features that I’ve added to your team’s project—namely,
user login capabilities. The login functionality follows the form used in this example app, which
you can checkout:

https://utopia.cs.memphis.edu/course/comp4081-2013fall/examples/dudeman-security/trunk/

Similar to the example, I have created three tables in your database: one for user IDs and
passwords, one for security roles, and one that maps user IDs to roles. You will find login form
and login error JSPs in src/main/webapp/WEB-INF/. I have also added a LogoutServlet Java
class.

To activate login protection for your servlets add a @ServletSecurity tag as follows:

@WebServlet("/foo.do")
@ServletSecurity(value=@HttpConstraint(rolesAllowed = {"member"}))
public class FooServlet extends HttpServlet {
 …

Note that there is only one security role at the moment: “member.” All users have this role.

I have included two SQL scripts in the top-level directory of your project: one for creating the
tables, and one for populating them with test data. As you create tables and test data, you must
add it to these scripts. That way, if your database becomes corrupted, the tables can be deleted
and regenerated.

Task 1: Register User

RegisterUserServlet and ListUsersServlet must function as in hw3, except they must store and
retrieve user data from the database.

Task 2: Add Movie

AddMovieServlet and ListMoviesServlet must function as in hw3, except they must store and
retrieve movie data from the database.

Task 3: Top-10 List

The EnterTop10List and ShowAllTop10Lists servlets must function as in hw3, except:

• they must store and retrieve movie data from the database.
• the form produced by the servlets must no longer have a user field. Instead, the servlets

must figure out the ID of the current user via the method call:
o request.getRemoteUser()

Task 4: Most Popular Movies

ShowMostPopularServlet must work as in hw3, except it must retrieve data from the database.

Task 5: Movie Playlist

CreatePlayListServlet must function as in hw3, except:

• it must store and retrieve movie data from the database.
• the form produced by the servlet must no longer have a user field. Instead, the servlet

must figure out the ID of the current user via the method call:
o request.getRemoteUser()

Task 6: Movie Review

PostReviewServlet must function as in hw3, except:

• it must store and retrieve movie data from the database.
• the form produced by the servlet must no longer have a user field. Instead, the servlet

must figure out the ID of the current user via the method call:
o request.getRemoteUser()

Step 2. Submit (by tagging) your team’s submission

The following instructions are essentially the same as last time; only the tag name has changed.

Attention! Before performing this step, you must make sure that all team members have
committed their edits to the trunk in the repository.

Only one team member (the leader) performs the following.

First, you must fill out the README.txt file in your project’s trunk. The file should list which
team member performed each task (one team member per task).

To submit work in this course, you must tag it. Then, I will checkout the revision that you tagged
and grade it. By tagging, you tell me that you are done, and this is the version you want me to
grade.

The tag you must use for this homework is hw4 (case sensitive, no spaces).

To tag the current revision of your trunk as hw4, do as follows:

1. Go to the SVN Repository Exploring perspective in Eclipse.
2. In the SVN Repositories view, find the trunk folder that you want to tag.
3. Right-click on the trunk folder, and click Show History. This should open the History

view with a table listing the past commits to the trunk.
4. In the History table, right-click the newest revision (i.e., the one with the greatest revision

number), and click Tag from… This should open a Create Tag dialog.
5. Enter hw4 into the Tag field and optionally enter a log comment, then click OK. This

should create the tag!

To verify that tagging was successful, open the following URL in a web browser (replacing
YOUR_TEAM with the appropriate name):

https://utopia.cs.memphis.edu/course/comp4081-2013fall/teams/YOUR_TEAM/movieclub/tags/

You should see an hw4 folder, and within that folder should be src, README.txt, etc.

