
Homework 3: JSPs and MVC
For this homework, you will practice writing Java EE web apps that have a model-view-
controller (MVC) architecture.

You will do this homework as a team; however, each member of your team will be responsible
for the completion of a particular task.

Step 1. Make movieclub pages do something

You will continue working on the movieclub pages that you began in Homework 2. In particular,
each team member must complete one of the tasks below. Each task describes a dynamic web
page based on the forms you created in Homework 2.

You must use an MVC architecture in implementing your task (i.e., using a combination of JSPs,
servlets, and POJOs).

A number of the tasks use one or both of the following provided classes (in package
edu.memphis.movieclub.model):

(1) UserManager: This object stores an array of registered users. To get a handle to handle to the
object, call its getInstance method, like this:

UserManager umgr = UserManager.getInstance();

It has an addUser method for adding User objects, and a getUsers method for getting an
ArrayList of registered users.

(2) MovieLibrary: This object is basically the same as UserManager, except it stores Movies,
not Users.

Additionally, you and your teammates will need to create a number of other model classes
(details in the task descriptions below). I have provided empty class skeletons for these in the
models package.

NOTE: The details of the classes you are to create are spread throughout the task descriptions.
For example, different aspects of the User class are spread across tasks 1, 3, 5, and 6. You will
need to coordinate with your teammates to prevent issues when implementing these.

Step 2. Submit (by tagging) your team’s submission

The following instructions are essentially the same as last time; only the tag name has changed.

Attention! Before performing this step, you must make sure that all team members have
committed their edits to the trunk in the repository.

Only one team member (the leader) performs the following.

First, you must fill out the README.txt file in your project’s trunk. The file should list which
team member performed each task (one team member per task).

To submit work in this course, you must tag it. Then, I will checkout the revision that you tagged
and grade it. By tagging, you tell me that you are done, and this is the version you want me to
grade.

The tag you must use for this homework is hw3 (case sensitive, no spaces).

To tag the current revision of your trunk as hw3, do as follows:

1. Go to the SVN Repository Exploring perspective in Eclipse.
2. In the SVN Repositories view, find the trunk folder that you want to tag.
3. Right-click on the trunk folder, and click Show History. This should open the History

view with a table listing the past commits to the trunk.
4. In the History table, right-click the newest revision (i.e., the one with the greatest revision

number), and click Tag from… This should open a Create Tag dialog.
5. Enter hw3 into the Tag field and optionally enter a log comment, then click OK. This

should create the tag!

To verify that tagging was successful, open the following URL in a web browser (replacing
YOUR_TEAM with the appropriate name):

https://utopia.cs.memphis.edu/course/comp4081-2013fall/teams/YOUR_TEAM/movieclub/tags/

You should see an hw3 folder, and within that folder should be the src folder along with the
README.txt, pom.xml, and .project files.

The Tasks

Task 1: Register User

New users can be registered with the system.

Create a servlet RegisterUserServlet that:

• accepts a GET request and responds with the Register User form from HW2.
• accepts a POST request sent from the form, creates a User object based on the

parameters, adds a User object to the UserManager, and responds with the form
(empty).

Create a servlet ListUsersServlet that accepts a GET request and responds with a listing of each
registered user that includes all the information entered in the Register User form.

You will need a User class with the following methods and attributes:

Task 2: Add Movie

Movies can be added to the library of movies.

Create a servlet AddMovieServlet that:

• accepts a GET request and responds with the Add Movie form from HW2.
• accepts a POST request sent from the form, creates a Movie based on the parameters,

adds a Movie object to the MovieLibrary, and responds with the form (empty).

Create a servlet ListMoviesServlet that accepts a GET request and responds with a listing of
each movie in the library that includes for each movie all the info entered into the above form.

You will need a Movie class with the following methods and attributes:

Task 3: Top-10 List

Each user has a top-10 list of their favorite movies.

Create a servlet EnterTop10List that:

• accepts a GET request and responds with the Top-10 List form from HW2. However,
your form must be modified as follows. (1) It must populate each dropdown with the
names of all movies stored in the MovieLibrary. (2) You must modify the original form
by adding a drop-down that lists all the registered users, so the end-user can choose
which user the list belongs to.

• accepts a POST request from the form, and uses the parameters to appropriately set the
top-10 list of the selected user. The servlet must respond with the form (same as with
GET).

Create a servlet ShowAllTop10Lists that accepts a GET request, and lists each registered user’s
top-10 list.

You will need a User class with the following attributes and methods (plus some of the ones from
Task #1):

Task 4: Most Popular Movies

Based on users’ top-10 lists, the most popular movies can be identified.

Create a servlet ShowMostPopularServlet that:

• accepts a GET request and responds with the Most Popular form from HW2. However,
your form must be modified as follows. It must not show the list of most popular movies,
just the form elements (e.g., the genre chooser).

• accepts a POST request from the form, and uses the genre parameter to go through each
user’s top-10 list and count up the number of times each movie of that genre appears. The
servlet must respond with a form that is the same as with GET, except that it must list the
movies sorted from most occurrences to least. (Don’t worry about ties.)

You will need classes PopularityCalculator and MovieScore with the following attributes and
methods:

Task 5: Movie Playlist

Users may create a playlist of movies.

Create a servlet CreatePlayListServlet that:

• accepts a GET request and responds with the Movie Playlist form from HW2. However,
your form must be modified as follows. It must not show the list of movies, just the form
elements. It must add a drop-down element for choosing the user (and which lists all
registered users).

• accepts a POST request from the form, and uses the user and other parameters to add the
movie to the user’s playlist. If the submitted playlist title is non-empty, then update the
title; otherwise, leave the title unchanged. The servlet must respond with the form, same
as with GET, except that it must fill in the user’s name and list title, and list the movies in
that playlist (including the one that was just added).

You will need classes PlayList and User with the following attributes and methods (plus some of
the ones from Task #1):

PlayList

Task 6: Movie Review

Users can write movie reviews.

Create a servlet PostReviewServlet that:

• accepts a GET request and responds with the Movie Review form from HW2. However,
your form must be modified as follows. It must add a drop-down element for choosing
the user (and which lists all registered users).

• accepts a POST request from the form, and uses the user and other parameters to add the
the review to the User’s list of reviews. With a listing of all the user’s reviews (including
the one that was just added).

You will need classes User and Review with the following attributes and methods (plus some of
the ones from Task #1):

