
COMP/EECE 4081 

Final Study Guide 
Fall 2012 

This document contains a list of the topics and skills that will be covered on the final. For 
problems that require reading/interpreting/modifying/writing code, you need not memorize the 
exact APIs covered, but you should be able to understand/apply the APIs if I provide you a listing 
of their classes and method signatures. 

This study guide does not cover material included in the midterm study guide; however, some 
midterm material may appear on the final. 

System Sequence Diagrams (SSDs) 

• Know the conventions and notations of SSDs. 
• Be able to draw an SSD base on a use case or other description of user-system interaction. 
• Know why creating SSDs is useful (hint: system operations and object collaborations). 

Domain Models 

• Know the notations and conventions of domain models (represented with class diagrams). 
o Know how to choose between modeling a thing as a attribute or a class. 
o Know how to model generalization. 

 Know/apply the 100% Rule. 
 Kow/apply the Is-a Rule. 
 Know/apply guidelines on when to model a subclass. 

o Know how to model abstract classes. 
o Know how to model composition. 

 Know the semantics implied by composition. 
• Know how to create a domain model (class diagram) based on descriptive text. 

o Know/apply noun-phrase identification technique. 
o Know/apply the “think like a mapmaker” technique. 

• Know how to read/interpret a domain model. 
• Know why creating domain models is useful. 

Design Class Diagrams 

• Know how design class diagrams are different from domain models. 
• Know why creating design class diagrams is useful. 
• Know how design can be seen as a refinement process and how design class diagrams fit into 

the process. 
• Know the notations and conventions of domain models (as covered in lecture). 

o Know how to distinguish between data types and non-data types. 
• Know how to create a design class diagram from descriptive text and how to reverse engineer 

a design class diagram from code. 



Design Sequence Diagrams 

• Know why creating sequence diagrams is useful for design. 
• Know the notations and conventions of sequence diagrams (as covered in lecture). 

Object-Oriented Design 

• Know/apply responsibility driven design. 
• Know/apply the GRASP patterns covered in lecture: 

o Creator Pattern 
o Information Expert Pattern 
o Low Coupling Pattern 
o High Cohesion Pattern 
o Indirection Pattern 
o Protected Variations Pattern 
o Polymorphism Pattern 

• Understand the relationship between coupling and cohesion. 
• Know/apply the Law of Demeter. 

Ethics and Software Reliability 

• Understand that all “real” software contains bugs, and the types of moral/ethical challenges 
this creates. 

• Be able to apply an ethical perspective to analyze difficult moral questions. 

Verification and Validation 

• Be able to define these terms: verification, validation, defect/bug/fault, error, failure, test 
case, test suite. 

• Understand the “testing problem” and why it exists. 
• Know what unit testing, integration testing, and system testing are, and how they’re different. 
• Know what blackbox testing and whitebox testing are, and how they’re different. 
• Know what regression testing is. 
• Know what test-driven development (TDD) is, how to apply it, and what its pros/cons are. 
• Know common criteria for selecting blackbox test cases. 
• Know how to interpret/create control flow graphs. 
• Know/apply the following whitebox testing techniques: statement coverage, condition 

coverage, and path coverage. 
• Know about code reviews. 
• Know how to use the JUnit API to write test cases. 


