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Abstract—Programmers performing a change task must
understand the existing software in addition to performing
the actual change. This process is likely to be affected by
characteristics of the task. We investigated whether the nature
of a task has any relationship with when a programmer
edits code during a programming session. We characterized
differences in editing behaviour with three types of editing
styles: EDIT-FIRST, EDIT-LAST, and EDIT-THROUGHOUT. We
based our analysis on the interaction history of over 4000
programming sessions collected as part of the development
history of open source projects. Our results showed that an
enhancement task (as opposed to a bug fix) was less likely to
be associated with a high fraction of source code edit events at
the beginning of the programming session. To our surprise, we
also found that the presence of a stack trace in a bug report
did not significantly affect the editing style of the programming
session.

Keywords-Program comprehension; Development interaction
history; Mining software archives.

I. INTRODUCTION

Programmers performing a change task must understand
the existing software in addition to performing the actual
modification [1]. Many theories have been proposed to
describe the program understanding process. For example,
Littman et al. observed that a programmer using a systematic
strategy studied code in detail before making changes to
the code, and a programmer using an as-needed strategy
minimized this studying stage [2].

Such theories hint at the significance of timing of coding
activity in a programming task. Given that a major goal when
designing a software development tool is to present relevant
information when a programmer needs it, understanding
when programming edit events (that represent coding) occur
in a task is key. When do programmers make edits within a
task performed in modern software development environ-
ments? How is this timing of edits affected by external
factors such as the nature of a task?

In this paper, we describe our analysis of the relationship
between programmer behaviour and task type. The aspect of
programmer behaviour we analyzed was based on when a
programmer changes the code. We characterized differences
in editing behaviour with three types of editing styles: EDIT-
FIRST, EDIT-LAST, and EDIT-THROUGHOUT. The study was
based on data that has been collected as part of the develop-
ment history of open source projects: the interaction history
of over 4000 programming sessions by over 100 program-

mers using the Eclipse development environment,1 collected
by the monitoring facility which supports the Mylyn task-
focused interface [3]. This history of programming sessions
was linked with their corresponding tasks, more specifically,
bug reports2 in the Bugzilla3 bug tracking system.

We found that different types of tasks were associated
with different editing styles in terms of when the edit events
to the source code occur. For example, an enhancement task
(as opposed to a bug fix) was less likely to be associated
with a high fraction of source code edit events early on in
the programming session. To our surprise, we also found that
the presence of a stack trace in a bug report did not have a
significant impact on the editing style of the programming
session.

For the rest of the paper, we first summarize related work
(Section II) and our study (Section III). We then present how
the nature of tasks relates to editing styles (Section IV) and
how the presence of a stack trace in a bug report relates to
editing style (Section V). We end the paper with discussion
(Section VI) and conclusion (Section VII).

II. RELATED WORK

We present three areas of related work: studies which use
recorded usage data similar to the type of data we used in our
study; other tools and analyses based on interaction history;
and the line of research in cognitive models in program
comprehension and recent empirical studies on programmers
performing change tasks in lab settings.

Empirical studies on tool usage using interaction history

Several studies have looked into recorded software envi-
ronment usage data to better inform software engineering
tool design. Murphy et al. reported on how programmers
use a development environment [4], based on usage data
collected by a version of the interaction history monitoring
facility supporting the Mylyn task-focused interface [5].
Murphy-Hill et al. used four different data sets, including
tool usage data from the study by Murphy et al., to under-
stand how developers refactor [6]. Parnin and Rugaber used
interaction history, also including the same set of usage data

1http://www.eclipse.org
2We follow the convention to use the word “bug report” to refer to both

a software bug report and an enhancement request.
3http://www.bugzilla.org
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from Murphy and colleagues, to understand how program-
mers resume their work after having been interrupted [7].
Our study differs in the intent, in that we are interested in
revealing the association between different editing styles and
task types, rather than on general usage, refactoring usage
or resumption strategies. Although the type of interaction
history we used was the same or similar to interaction history
used in these studies, our data was mined from a software
archive, rather than collected for the purpose of the study as
with in these studies.

Tools and analyses based on interaction history

Interaction history has started to become a popular source
of input for various tools and analyses. Several tools have
used interaction history for recommending code of interest.
Both Mylyn [3] and wear-based filtering [8] use interaction
frequency to highlight the elements of interest in the user
interface of a development environment and filter away
uninteresting elements. The NavTracks tool provides rec-
ommendations of which files are related to the currently
selected files based on an analysis on cycles in the navi-
gation history [9]. Robillard and Murphy used navigation
data for inferring code that belongs to the same software
concerns [10]. Parnin and Görg experimented with several
measures based on analyzing interaction history of inferring
the context that are relevant to a task [11]. Robbes and
Lanza proposed a code completion tool based on analyzing
interaction history [12].

Researchers have extended the change coupling idea—
in the context of analyzing files that tends to get checked
in together to a Software Configuration Management sys-
tem [13]—to interaction history. Zou et al. identified several
types of interaction coupling, such as co-change, change-
view, co-view, and other more specific patterns [14]. Robbes
et al. augmented this work with three other measures based
on interaction history [15]: changed-based coupling (entities
that change many times during a session are more coupled
than those which only changed occasionally); interaction
coupling (the number of switches between elements); time-
based coupling (the proximity in time two entities changed).

A challenge with analyzing interaction history was to
divide the sequence of events in an interaction history into
meaningful units. The SpyWare tool displays a visualization
and identifies sessions of work based on several measures in-
cluding number of edits per minute [16]. Coman and Sillitti
proposed an approach to segment development sessions [17].
Safer and Murphy proposed a tool to help developers recall
information about recent tasks by tracking the navigation
history and capturing screen snapshots [18].

In summary, all this prior work focuses on different ways
to use interaction history in software engineering tools. In
contrast, the purpose of our study is to understand how
interaction history relates with a factor external to the
interaction history, the task type.

Empirical studies of programmers in lab settings

Another line of work relevant to ours is the long history of
program comprehension research. Storey’s survey provides
a comprehensive overview [19]. Numerous models describe
the cognitive processes used by programmers to form a
mental representation of the program, based on observations
on programmers in lab settings. According to the top-down
theory, programmers start with a top-level hypothesis about
the general nature of the program, refined by subsequent
sub-hypotheses [20]. According to the bottom-up theory,
programmers read individual statements in the code and
mentally group those statements into higher-level abstrac-
tion, capturing control and data flow [21]. Littman et al.
noted that programmers use either a systematic or as-needed
strategy [2].

More recently, several researchers have studied how pro-
grammers perform change tasks in a lab setting. Ko et al.
reported on programmers using the Eclipse development
environment on small maintenance tasks [22]. They specifi-
cally discussed editing patterns in terms of when editing,
searching, and navigation operations happen in the task.
Robillard et al. characterized how programmers who are
successful at maintenance tasks typically navigate code [23].

Our work complements this large body of knowledge from
lab settings by looking at a large amount of interaction
history collected in the field. There is some initial evidence
that the behaviour seen in the lab translates to the trace
data of how a programmer interacts with a development
environment collected in the field [24]. In addition, our study
differs in the intent, which is to understand the editing styles
from different types of task.

III. RESEARCH QUESTIONS, DATA, AND VARIABLES

We were interested in determining the relationship be-
tween different types of editing behaviour and the associated
tasks. We categorized the different types of editing behaviour
based on when edit events happen: We categorized a trace—
a sequence of events in the interaction history—with a
high fraction of edit events in the first half of the trace as
having an EDIT-FIRST style, a trace with a lower fraction of
edit events as having an EDIT-LAST style, and otherwise a
EDIT-THROUGHOUT style. We could roughly map the EDIT-
LAST style to a systematic strategy (a programmer tends
to study code in detail before making changes) in the pro-
gram comprehension theory and the EDIT-FIRST and EDIT-
THROUGHOUT as different degrees of as-needed strategy (a
programmer tends to minimize the studying stage) [2].

The two research questions we were interested in were
motivated by prior work. Prior research has shown that the
program comprehension strategy chosen by a programmer
depends on the task, whether a task requires recall and
comprehension [21]. We wanted to investigate how the task
type (an enhancement or a bug fix) relates to editing style:
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Figure 1. Distribution of edits and selections in a normalized trace timeline.

RQ1: How do different types of editing behaviour relate
to task types?

To further understand the context in which the editing
styles took place, we investigated whether the presence of a
stack trace affects the editing style of a task. A stack trace
in a bug report provides a concrete point for a developer to
start the task. This information can impact how a developer
approaches a task. Prior work has shown that the presence
of a stack trace in a bug report affects how fast a task gets
fixed [25]. Hence, our second research question is:
RQ2: Does the presence of a stack trace in a bug report
affect editing behaviour?

A. First source of data: interaction history

Our data consists of traces of interaction history collected
by the user action monitoring facility that supports Mylyn.
This data was the basis for inferring editing styles. Each
trace captured the interaction required to complete a task
declared by the programmer using Mylyn. The monitor
recorded events (such as edits and selections) a programmer
performed on the Eclipse development environment.

Interaction history data was generated by the Mylyn
monitor and was stored as an XML file containing events.
Each event represents a user action on a program element,
at a particular time recorded as a timestamp. The monitor
captures two kinds of user actions: selections (editor and
view selections via a mouse or a keyboard) and edits.4 The
monitor also records the signature of the program element
involved in a user action. For example, the signature of a
Java method contains the Java package and class the method
was in, the name of the method, and the parameter type(s)
of the method.

Conceptually, the interaction history is a sequence of
ordered events. However, for scalability, the monitor does
not record all user actions [26, p.43]. Most of the events
involving the same program element through the same user
action are aggregated. Understanding how these events are
aggregated was hence a requirement for mining this data.
When such an aggregation happens, the event was expanded
to store two timestamps instead of one: the timestamp
of the first event and the timestamp of the last event
being aggregated. Figure 1 shows the effect of aggregate

4The monitor can also capture commands (such as preference changes
and saving a file). For this data set, however, commands were not recorded
because the monitor was not configured to do so.
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Figure 2. Distribution of the number of traces programmers contribute to

events on the data. The two graphs show the distribution
of timestamps, each timestamp normalized between 0 and
1, where 0 represents the time 𝑎 of the first event in
the task, and 1 represents the time 𝑏 of the last event in
the task. Hence, each aggregated event start time or end
time 𝑡 is positioned at 𝑡

(𝑏−𝑎) in the graphs. We used these
timestamps for classifying traces to editing styles, described
in Section III-C. The reason there were so many events
close to the beginning and the end of traces in Figure 1
was because most of the aggregates capture similar events
throughout the trace.

We analyzed traces from the development of Eclipse,
which is written in Java. The interaction traces are archived
in the Bugzilla issue-tracking system, each as an attachment
to a bug report. 60% of the traces come from one Eclipse
sub-project, the Mylyn development project itself, i.e., the
interaction history of tasks involved to build the Mylyn tool.
The Mylyn project demands that all code contributions to the
project use Mylyn itself.5 The intent is to make it easier to
recover the program elements relevant to the implemented
solution of a bug report when the solution needs to be
revisited. This project rule is implemented by requiring each
code contribution to be associated with a bug report and
“task context” file, which contains the part of the interaction
history associated with the solution of a bug report. For the
rest of the sub-projects in Eclipse, there are no project rules
that dictate the use of Mylyn. In other words, the attachment
of traces is done on a voluntary basis. Table I shows the top
five sub-projects in Eclipse with the most number of traces.

B. Second source of data: bug reports

Our second data source was Bugzilla bug reports in
the Eclipse project6 that were associated with a trace. We
derived task type as follows. Each bug report includes several
types of fields: structured fields (for example, severity,
priority, and the email address(es) of the programmer(s)
assigned to the task), textual fields (for example, the title of
the report, the description of the bug, and comments on the
bug), attachments (for example, an image file containing a
screen-shot), and relationships with other bug reports (for
example, duplicates). A trace was associated with a bug
report as an attachment of the report.

5http://wiki.eclipse.org/Mylyn Contributor Reference#Contributors
6https://bugs.eclipse.org/bugs/
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Table I
TOP FIVE PROJECTS WITH THE MOST NUMBER OF TRACES

Projects Description # of traces
Mylyn for task management 1994
PDE for building Eclipse plug-ins 505
Platform core framework in Eclipse 438
ECF for building distributed servers & applications 142
MDT for UML modeling 94
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Figure 3. Distribution of the duration of edits

For our analysis, we constructed a data set that contained
all the traces named “mylyn-context.zip” (the default name
the Mylyn tool gives when exporting the interaction history
to a trace attached to a bug report) that were attachments
to bug reports, as well as the bug reports to which these
traces were attached. The data set spanned roughly four
years of development, from the first bug report on November
11, 2005, to December 29, 2009. In total, there were 3128
bug reports associated with at least one of the 4245 traces.
The data set contained 153 programmers who contributed to
at least one trace. Eighty-three of the programmers (54%)
contributed fewer than five traces. The way we identified
a programmer was by the email address indicated as the
attacher of the trace on the bug report. Figure 2 shows the
distribution of the number of traces of the 70 programmers
(46%) who contributed 5 or more traces. The median number
of traces for these 70 programmers was 14.5. Only 7 (4.6%)
of them contributed more than 200 traces

C. Editing style of a task

For RQ1 (how do different types of editing behaviour
relate to task types?) and RQ2 (does the presence of a stack
trace in a bug report affect editing behaviour?), we needed
the notion of editing behaviour for a task. We categorized
a task as an editing style—EDIT-FIRST, EDIT-LAST, and
EDIT-THROUGHOUT—based on the fraction of edit events
at different points in a trace. We characterized when an
edit event happened as follows. First, we normalized all the
timestamps in a trace to [0,1]. An edit event 𝑒𝑡 within a
trace 𝑡 was classified as the first half of the trace, if more
percentage of the duration of 𝑒𝑡 (the difference between
normalized start and end times) resides in the first half, or
more precisely:

𝑒𝑡 =

{
𝑓𝑖𝑟𝑠𝑡 if 𝑒𝑠𝑡𝑎𝑟𝑡 < 0.5 and 𝑒𝑒𝑛𝑑 < 0.5

or (0.5− 𝑒𝑠𝑡𝑎𝑟𝑡) > 𝑒𝑒𝑛𝑑 − 0.5)
𝑠𝑒𝑐𝑜𝑛𝑑 otherwise
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Figure 4. Density function of 𝐹𝑟(𝑒𝑡 = 𝑓𝑖𝑟𝑠𝑡)
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Figure 5. Editing styles for 20 programmers with the most contributions

Intuitively, we considered an edit event as a time range
and classified it to the first or the second part of the trace
based on whether the time range covered more of the first or
the second part of the trace. The motivation for classifying
an event this way was to deal with the fact that an edit event
could be an aggregate of multiple edits on the same program
element. We discuss further issues in the Discussion section.
Figure 3 shows the distribution of the duration of edit events
of the traces.

We characterized a trace using the fraction of edit events
in the first half of all edit events in the trace:
𝐹𝑟(𝑒𝑡 = 𝑓𝑖𝑟𝑠𝑡) = 𝑁𝑏𝑟(𝑒𝑡=𝑓𝑖𝑟𝑠𝑡)

𝑁𝑏𝑟(𝑒𝑡)
. Figure 4 shows the

density function of 𝐹𝑟(𝑒𝑡 = 𝑓𝑖𝑟𝑠𝑡). The figure reveals a tri-
modal distribution. The distribution is outlined by the dotted
line (in red) in Figure 4, with the three modes coinciding
with the bar closest to 𝐹𝑟(𝑒𝑡 = 𝑓𝑖𝑟𝑠𝑡) equal zero, the
bar in the middle, and the bar closest to 1. Hence, three
is the most natural number of styles. We used the two
lowest points which divided the three modes in the density
function as the thresholds to group the traces: 0.19 and 0.87.
Consequently, we divided the traces with 𝐹𝑟(𝑒𝑡 = 𝑓𝑖𝑟𝑠𝑡)

close to 0 (between 0% to 19% of events in the first
half of the trace), close to 1 (between 87% to 100%), or
neither. We called these traces EDIT-LAST, EDIT-FIRST, and
EDIT-THROUGHOUT, respectively. Of the 4245 traces, 539
(12.7%) traces were classified as EDIT-FIRST, 892 (21.9%)
as EDIT-LAST, and 2698 (65.4%) as EDIT-THROUGHOUT.
Figure 5 shows the proportion of editing styles of the 20
programmers with the most number of contributions.
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D. Characterizing tasks

For RQ1, we used the severity field of the bug report to
categorize tasks. The field can take one of the following
categories: enhancement, blocker, critical, major, normal,
minor, and trivial. The severity field was first provided when
the report was created by a user or a programmer according
to a guideline set by the project.7 One problem with this
process is that some users may not follow the guideline
for assigning the field. Fortunately, the field does tend to
eventually evolve to an agreed-upon one [27]. Therefore,
we took the latest value of the severity field to define the
nature of a task.

In addition, we addressed the imprecise nature of the
severity field by grouping the seven severity categories into
coarser ones: enhancement tasks (only consisting of the en-
hancement severity category). minor bug fixes (aggregating
minor and trivial severity categories), and major bug fixes
(aggregating blocker, critical, major, and normal severity
categories). Of the 3134 bug reports, 674 (21.5%) were
enhancement tasks, 444 (14.2%) were minor bug fixes, and
2016 (64.3%) were major bug fixes. The 4245 traces that
were associated with these 3134 bug reports, 1180 (27.8%)
were associated with enhancement tasks, 522 (12.3%) with
minor bug fixes, and 2543 (60.0%) with major bug fixes.

For RQ2, we were interested in the presence of a stack
trace in a bug report. We determined whether a bug report
contained a stack trace using a set of regular expressions
which captured the output of typical formats of stack traces.

To ensure that the bug severity and the presence of a stack
trace field did represent a meaningful and reliable grouping
of the bug reports, we applied a clustering algorithm on the
bug reports using bug severity and the presence of a stack
trace, and one additional feature, the number of comments.
The motivation for using the number of comments as a
feature was that the amount of comments quantified how
much discussion took place to resolve the bug: if no long
discussion existed, it was likely that the bug had a clear fix.

To find the clusters, we used an algorithm called PAM
(Partitioning Around Medoids8), an algorithm that tends
to be robust in the presence of outliers.9 One challenge
with using a typical clustering algorithm is to determine the
number of clusters, k. To solve this problem, we used the

7http://www.eclipse.org/tptp/home/documents/process/development/
bugzilla.html

8The essence of the PAM algorithm is based on first searching for k (the
specified number of clusters) representative objects or medoids, and then
assigning each object to the nearest medoid [28]. The way the algorithm
specifies whether two objects are “near” is by a distance function, which
is the Euclidean distance of the three features in our case.

9We used an off-the-shelf implementation of this algorithm in the R
cluster package: http://cran.r-project.org/web/packages/cluster/index.html

Table II
MEDOIDS OF THE RESULTING CLUSTERS ON TASKS

# of comments severity stack trace?
Cluster 1 5 major yes
Cluster 2 6 major no
Cluster 3 9 enhancement no
Cluster 4 6 minor no

silhouette width,10 which can be used to find the optimal
number of clusters [28], by running the clustering algorithm
with different k values and seeing which one gives a larger
silhouette width. Applying the clustering algorithm, we
found that the optimal number of clusters is four, with a
silhouette width of 0.94, meaning the tasks form extremely
strong clusters. Table II shows the medoids (centers) of the
clusters. This information is useful for understanding what
is a typical member in a cluster. Note the correspondence
between this grouping with the grouping defined by only
the severity field. Roughly speaking, enhancement tasks
correspond to Cluster 3, minor bug fixes correspond to
Cluster 4, major bug fixes with the presence of a stack trace
in the report correspond to Cluster 1, and major bug fixes
without a stack trace correspond to Cluster 2.

IV. HOW DO DIFFERENT TYPES OF EDITING BEHAVIOUR

RELATE TO TASK TYPES? (RQ1)

Having presented the data and the variables in this study,
we now assess RQ1 from a statistical perspective and then
explain some of the statistical findings more qualitatively.

Statistical assessment

For the statistical assessment, we first used a chi-squared
test of independence to determine whether there existed an
association between editing styles and task types, since both
variables are nominal. This chi-squared test only informed
us whether a statistically significant association between
the two variables existed, not which of the nine possible
associations—three types of task, each could be associated
with three editing styles—are statistically significant nor the
direction (positive or negative) of the association. Thus, if
the chi-squared test yields a significant result, we would
investigate which particular type of task was related to which
editing style through nine post-hoc tests, one for each of
the possible association. For all the test statistics presented
in this paper, the significance level was at 𝛼 = 0.05.
We performed these tests using various packages in the R
statistics framework, except noted otherwise .11

10Intuitively, the silhouette width measures how well points (in our case,
points in the feature space) in a cluster are close to each other compared
to their closest cluster. A value close to 1 means that the points are well-
clustered and they were assigned to very appropriate clusters, close to 0
means that the points could be assigned to another closest cluster, and a
value close to -1 means that the points have been misclassified. A clustering
with a silhouette width above 0.7 is considered strong, reasonable between
0.5 and 0.7, weak or artificial between 0.25 and 0.5, and no substantial
structure less than 0.25 [28].

11http://cran.r-project.org
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Table III
BREAK-DOWN OF EDITING STYLE PER TASK GROUP. BOLD ENTRIES

REPRESENT SIGNIFICANT ASSOCIATIONS

EDIT-FIRST EDIT-LAST EDIT-THRUOUT total
Enh. 125 (-) 341 714 1180
Minor 69 124 (-) 329 (+) 522
Major 401 (+) 714 1428 (-) 2543
total 595 1179 2471

Chi-squared test - Is there a relationship between editing
styles and task types: Table III shows the raw data, the
contingency table used in the chi-squared test, with the
break-down of editing styles for each task type used in the
chi-squared test, expanded with the particular association
found in the post-hoc test in the next stage of the analysis
described later. A chi-squared test revealed a statistically
significant relationship between task type and editing styles
(𝑑𝑓 = 4, 𝜒2 = 28, 𝑝 = 0.000069).

Post-hoc tests - Which task types are associated with
which editing styles: To investigate where the association
might lie, we examined the standardized Pearson residuals
for each of the possible association, i.e., each cell in the
contingency table used in the chi-squared test [29].12

Our data in Table III with three editing styles and three
types of tasks had nine possible associations, requiring nine
tests using standardized Pearson residuals. Five of these tests
resulted in a statistically significant result:

1) Enhancement tasks were negatively associated with
EDIT-FIRST (standardized Pearson residual = -4.0, 𝑝 =
0.000067). This association was indicated in Table III,
as bold in the cell that pertains to the row denoting
enhancement tasks and the EDIT-FIRST column.

2) Minor bug fixes were positively associated with EDIT-
THROUGHOUT (standardized Pearson residual = 2.4,
𝑝 = 0.017) and

3) negatively associated with EDIT-LAST (standardized
Pearson residual = -2.2, 𝑝 = 0.029).

4) Major bug fixes were positively associated with EDIT-
FIRST (standardized Pearson residual = 4.0, 𝑝 =
0.000058) and

5) negatively associated with EDIT-THROUGHOUT (stan-
dardized Pearson residual = -3.3, 𝑝 = 0.00090).

To examine the degree of these associations, we looked
at odds ratios, comparing the odds of two editing styles on
two groups of tasks [29, p.55] and reporting the ones related
to the five significant associations revealed from the residual
analysis:

12The standardized Pearson residual for a cell (in Table III, for example)
would indicate how much different the cell count was from the count if no
associations were present. These residual values were standardized, in the
sense that the probability distribution of these values can be approximated
by the standard normal distribution. The cells with standardized Pearson
residuals exceeding an absolute value of 1.96 (from the distribution table)
at the 𝛼 = 0.05 significance level would be the cells with significant asso-
ciations. A positive standardized Pearson residual would indicate a positive
association and a negative value would indicate a negative association.

∙ For the two kinds of bug fixes (that is, data from
the second and third rows of Table III), the odds
ratio of EDIT-THROUGHOUT style instead of EDIT-
LAST for minor bug fixes relative to major bug fixes
was 329/124

1428/714 = 1.32. This ratio compares the odds of
a task being EDIT-THROUGHOUT over EDIT-LAST for
minor bug fixes (the numerator 329/124) compared to
that of major bug fixes (the denominator 1428/714)).
This ratio quantified the size of the effect of two
relationships we found significant: #2 (minor bug fixes
were positively associated with EDIT-THROUGHOUT)
and #5 (major bug fixes were positively associated with
EDIT-FIRST) from the residual analysis.

∙ For enhancements and minor bug fixes, the odds ratio
of EDIT-FIRST style instead of EDIT-LAST for enhance-
ments relative to minor bug fixes was 0.658. This ratio
quantified the size of the effect of two relationships we
found significant: #1 (enhancement tasks were nega-
tively associated with EDIT-FIRST) and #3 (minor tasks
were negatively associated with EDIT-LAST).

∙ For major bug fixes and enhancements, the odds ratio
of EDIT-FIRST style instead of EDIT-THROUGHOUT for
major bug fixes relative to enhancements was 1.60, and
the odds ratio of EDIT-FIRST style instead of EDIT-
LAST for major bug fixes relative to enhancements
was 0.835. These ratios quantified two relationships we
found significant: #1 (enhancement tasks were nega-
tively associated with EDIT-FIRST) and #4 (major bug
fixes were positively associated with EDIT-FIRST).

Eliminating effect of project experience on RQ1: In RQ1,
we investigated the effect of task type on editing style.
However, the investigation did not take into account the
effect of individual programmers on the analysis. Program-
mers who contributed to more traces were being sampled
more than programmers who contributed to fewer traces. To
eliminate the effect on the number of bugs a programmer
contributed to, we used a stratified analysis, the Cochran-
Mantel-Haenszel (CMH) test [29], where each strata was
a group of programmers with the similar number of bug
contributions. In the CMH test, the data are arranged in a
set of two-dimensional tables, each table representing data
from a particular strata.

A chi-squared test and a CMH test both address the
question of associations between two variables, but the
difference between a CMH test and a chi-squared test is that
the CMH test investigates the overall association among the
set of tables instead of the association in just one table as
in a chi-squared test. In the chi-squared test we performed
on the data from Table III, the data consisted of a table with
nine cells, combination between the three task types (minor,
major, and enhancement) and the three editing styles (EDIT-
FIRST, EDIT-LAST, and EDIT-THROUGHOUT). For the CMH
test, we divided the data into four stratas—programmers
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with the number of bug contributions in the first quartile,
second quartile, third quartile, and the fourth quartile—and
the data from each strata corresponding to a table with nine
cells from combining the three task types and the three
editing styles.

The CMH test revealed a statistically significant relation-
ship between task type and editing styles, adjusting for the
effect of programmers with different number of contributions
of bugs (𝑑𝑓 = 4, 𝐶𝑀𝐻𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠 = 13, 𝑝 = 0.010). Note
that the CMH test result could change if we defined the
stratas differently. For example, in the extreme case where
all programmers are in one strata, this case is the same as the
chi-squared test we performed on Table III. To investigate
how sensitive was the definition of stratas on the test statistic,
we experimented with the other extreme case of having
each individual programmer as one strata. The CMH test13

revealed a nearly statistically significant relationship with
𝑝 = 0.062.14 We interpreted this result as the data did reveal
a significant association between task type and editing style
even after adjusting for individual programmers.

In-depth analysis

For a deeper understanding of the statistical relationships,
we analyzed a sample of the traces and the corresponding
tasks more qualitatively. For selected statistical relationships,
we chose three traces involved in the relationship.

Understanding a trace with hundreds or thousands of
events was a major challenge. To assist in this process, we
built a timeline based event visualizer. We also examined
the bug report the trace was attached to and the actual code
changes, from the patch attached to the bug report and/or the
version of the code checked into the version history (based
on the bug ID included in the check-in comment).

The factors we used in this in-depth analysis were mo-
tivated by prior work (see the respective citations). Three
concerned the traces: the number of programming sessions
defined as continuous activity in the trace separated by
interruption of more than a day (this aspect was important as
prior work has noted the prevalence of interruptions and the
effort to resume [30]); duration of the trace; and the ways
program elements were being selected (as studied in prior
work [31]). Two concerned the code changes: size of the
code changes; and how do the program elements touched in
the trace compared to the elements that are actually changed
in the patch or check-in (prior work has used elements in
an interaction trace and the actual check-in [32]). “Equal”
means that the trace contains all the events that can explain
the change and no additional events; “incomplete” means
that the trace misses to capture events that can explain part
of the change; “related extras” means that the trace contains

13the version of CMH test with Monte Carlo sampling approximation of
an exact test due to the high percentage (25%) of cells with zero

14We performed the test using the StatXact software,
http://www.cytel.com/software/StatXact.aspx.

events that can explain the change, plus other events on
related code; and “unrelated extra” means that the trace
contains events that can explain the change, plus other events
on unrelated code; this can be interpreted as a trace that
contains parts of another unrelated programming session.
These five factors are the last five columns of Table IV. The
first six columns are descriptive information about the traces,
the associated bug reports and the variables in this study.

1) Major and EDIT-FIRST style: One of the results from
the statistical assessment—more specifically, the residual
analysis—was that major bug fixes were positively associ-
ated with EDIT-FIRST style (result #4) while minor bug fixes
with the EDIT-THROUGHOUT style (result #2). We found this
a bit surprising because major bug fixes are more complex
than minor bug fixes, so we would expect minor bug fixes,
not major bug fixes, to be associated with EDIT-FIRST style.

To shed some light on an answer, we randomly selected
and analyzed three EDIT-FIRST traces that are associated
with major bug fixes, #261136, #267399, and #215156. The
additional dimensions we documented for these three bugs
are summarized in the first three rows of Table IV.

We found that two of the traces associated with major bug
fixes were EDIT-FIRST because the trace contained selection
events after all the required editing was completed. In the
fix of #261136 (which involved removing a file that broke
the unit tests), the selection events after the single edit
solely responsible for the code change touched several files
related to running the tests. For #267399 (which fixed a
synchronization problem with two UI views), the selections
involved after the edit events touched the same methods that
were being edited.

A possible explanation was that the selections performed
after the edit events were part of a code review. We further
speculated that as these two bugs were marked as having
major severity, it was important enough to deserve a code
review. Even if the process did not prescribe it, developers
might look over the code to ensure everything was as it
should be.

2) Minor bug fixes and EDIT-THROUGHOUT style: The
residual analysis revealed that minor bug fixes were associ-
ated with EDIT-THROUGHOUT style (result #2). Again, this
seemed a bit surprising because minor bug fixes tend to not
require a code exploration, more of a EDIT-FIRST scenario.

To investigate why, we randomly selected and analyzed
three EDIT-THROUGHOUT traces that were associated with
minor bug fixes (#275884, #280811, and #282445). The
three traces actually looked as expected, with selection
events interleaving with edit events that contributed to the
final patch. All three involved small changes (all within one
file as shown in the second last column in Table IV) and
were short (within a minute, 15 minutes, and 35 minutes,
respectively, again shown in Table IV).

We hypothesized that minor bug fixes could be associated
with EDIT-THROUGHOUT style because minor bug fixes
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Table IV
DIMENSIONS OF THE IN-DEPTH ANALYSIS

Bug
ID

Trace
attchmt. ID

Change summary Editing style
Bug

severity
# ses-
sions

Duration
of trace

Navigation
method(s)

Size of patch/
check-in

Trace compared
to patch/check-in

261136 122682
Removed an obsolete file

which broke the tests
EDIT-FIRST major 1 2 mins

Search View,
Pkg Explorer

deleted 1 file
related
extras

267399 127829
Fixed a synchronization

problem with 2 UI views
EDIT-FIRST major 1 39 mins

editor, Content
Outline view

edited 1 file
related
extras

215156 86777
Optimized code dealing

with Web requests
EDIT-FIRST major 1 18 mins

CVS Synch
view

edited 5 files incomplete

275884 135865
Changed a build file to

distribute the code online
EDIT-

THROUGHOUT
minor 1

within 1
min

Pkg Explorer edited 1 file equal

280811 143967
Improved a minor

appearance issue in the UI
EDIT-

THROUGHOUT
minor 1 15 mins editor edited 1 file

related
extras

282445 141960
Improved a minor

appearance issue in the UI
EDIT-

THROUGHOUT
minor 1 35 mins Pkg Explorer edited 1 file equal

174413 136079
Added of a pane in an
existing view in the UI

EDIT-LAST enh. 3 15 days editor
added 1,
edited 2

equal

277179 136568
Improved a minor

appearance issue in the UI
EDIT-LAST minor 1

within 1
min

editor edited 1 file incomplete

256774 119208
Fixed a bug in rendering

non-UTF8 characters
EDIT-LAST enh. 1 24 mins Search View edited 1 file

unrelated
extras

Table V
BREAK-DOWN OF STYLE FOR REPORTS WITH A STACKTRACE OR NOT

EDIT-
FIRST

EDIT-
LAST

EDIT-
THROUGHOUT

total

Contain a stack trace 68 118 250 436
Does not contain 572 1136 2509 4217
total 640 1254 2759

were typically simple and small changes which just needed
to be typed up, rather than requiring exploration beforehand
(a possible EDIT-LAST scenario) or code review after the edit
(a possible EDIT-FIRST scenario). To verify this hypothesis,
we used the Kruskal-Wallis ANOVA test [33] to determine
whether the durations of tasks from the three groups—minor,
major bug fixes, and enhancement tasks—were the same. We
used this non-parametric test because the durations of the
three groups did not follow a normal distribution. The test
revealed that the three groups of durations were significantly
different (𝑝 = 2.2 × 10−16). Post-hoc Wilcoxon tests [33]
showed that the durations of enhancement tasks were signif-
icantly greater than minor bug fixes (𝑝 = 2.2× 10−16) and
also greater than major bug fixes (𝑝 = 2.2× 10−16), but the
difference between the durations of minor and major bug
fixes were not significant (𝑝 = 0.32). Thus, our speculation
that programmers took shorter time to fix minor bug fixes
was partially right, as minor bug fixes indeed took shorter
time than enhancement tasks but not significantly shorter
than major bug fixes.

3) Enhancement tasks and EDIT-FIRST style: As we
learnt from the residual analysis, enhancement tasks were
negatively with EDIT-FIRST (results #1). This could be
explained by the fact that enhancement tasks might require
exploration throughout the trace. We noticed in one of the
enhancement tasks (#174413) that spans a longer time-frame
(15 days) that the timing of the edit events depended on a
reply in the bug report.

V. DOES THE PRESENCE OF A STACK TRACE IN A BUG

REPORT AFFECT EDITING BEHAVIOUR? (RQ2)

We explored relationships between editing styles of a task
and the presence of a stack trace through chi-squared test in

a similar way to our investigation of RQ1. Table V shows
the contingency table. A chi-squared test revealed that the
presence of a stack trace was independent from editing styles
(𝜒2 = 2.5, 𝑑𝑓 = 2, 𝑝 = 0.28).

VI. DISCUSSION

We explore some of the implications in the software
engineering context, threats to validity, and future work.

Implications for tool design

Our study provided some initial evidence that different
types of tasks were associated with different editing styles
(for example, major bug fixes are more likely to be associ-
ated with EDIT-FIRST styles). Since a large part of editing
happens in a software development environment, our results
have implications on the design of such environments. If
we know the editing style of a task, we can dynamically
configure the software development environment to present
only the most relevant parts to the particular editing style.
More concretely, for an EDIT-FIRST programming session,
the development environment can dynamically show more of
the editing related features, rather than the navigation related
features. The general idea of adaptive capabilities of the
development environment was inspired by several positions
[19], [31], [34]. To enable this vision to work, we would
need to build a model to predict editing styles, in contrast to
finding statistical associations in our study. Building such a
model would likely need factors other than the task type.

Threats to validity

Our study follows a quantitative design and exhibits the
usual threats: construct validity, where our measure only
approximates the phenomenon under study (programmer
behaviour) and external validity. The main concern with
external validity was that not all the bug reports in Eclipse
contained a trace and not all developers who contributed to
Eclipse submitted a trace. The only exception was the Mylyn
sub-project. Strictly speaking, our data is representative of
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the Mylyn project. As an initial analysis, we believe that our
data provides a good picture of the development habits in a
subset of Eclipse projects. We explain additional threats that
stem from our specific study environment:

Generalizability of interaction data collected by the Mylyn
monitor: Since the purpose of Mylyn is to reduce the need
of unnecessary navigation to program elements relevant to a
task, we expect that the programming behaviour with using
Mylyn has less navigation than the programming behaviour
without using Mylyn [5]. The impact of using data collected
by the Mylyn monitor, as opposed to similar data monitors,
is that Mylyn forces programmers define tasks, and the
storage of the code elements relevant to the task. From the
point of view from a researcher mining the traces, these
task-based data is great because there is no need to infer
which part of the interaction history belongs to which tasks.
This step is necessary when a monitor does not collect data
based on tasks and there is prior work which has attempted
to address this step [17]. Another feature of Mylyn that
affects the data is that a programmer can copy a previous
and similar task context to the current task the programmer
is working on. In the trace, the events are copied without any
meta-information that the copy operation was performed. We
believe that this operation was not used enough to affect our
results: we compare the content of all traces with each other
and found only 1.4% (68) of the traces are contained in more
than one other trace.

A trace might not have aligned with a task: A trace may
not be an accurate representation of the programming asso-
ciated with a change. For example, the trace of bug #215156
missed a key part of the change since changes to three
methods that were in the patch were not edited according to
the trace. This information is rendered as “incomplete” in
the last column of Table IV. The other type of an inaccurate
trace is one that contained unrelated program elements in
the trace. The trace of bug #256774 contains such unrelated
program elements in the beginning of the trace (marked as
“unrelated extras” in the last column of Table IV). This
could happen when a programmer inadvertently forgot to
switch from a previous task, to fixing #256774. In addition,
programmers who may seem to be inspecting the code might
be taking a break. From our in-depth analysis, we see that
a majority of the traces seem to be accurate.

Event aggregation: One of the goals of our study was to
make use of interaction data already available. The particular
type of data we looked at was collected by the Mylyn
monitoring facility, which is lightweight and already used
by many users as Mylyn is part of the standard Eclipse
download. However, a major challenge in using this data
was that an edit event in the trace could be an aggregate of
multiple edits on the same program element. We attempted
to address this issue when we defined the editing style: we
considered an edit event as a time range and classified to
the first or the second part of the trace based on whether the

time range covered more of the first or the second part of
the trace. In other words, we have implicitly assumed that
the rate edit was uniform within the time range. However,
this might not be a valid assumption.

A possible way to deal with this problem is to use the
degree-of-interest value associated with a program element
recorded in each event in the trace. The degree-of-interest
value reflects how frequently and recently a particular pro-
gram element has been interacted with in the duration of
a task. If an element has a higher degree-of-interest value,
we can assign a higher weight of the associated event in
the definition of editing style. There are two issues with this
approach. First, the degree-of-interest value captures both
the number of interactions and the timing of the events.
Thus, we cannot infer the number of interactions and the
exact timing of an interaction just from the degree-of-
interest value alone. Second, the degree-of-interest can also
capture explicit interest declaration by a programmer: when
a program element is deemed to be of relevance to the task
by the programmer, or when deemed otherwise, through the
Mylyn user interface.

An edit might not be a “real” edit: In our study, we have
assumed, implicitly, that an edit event corresponded to some
meaningful change in the code whereas a selection event
corresponded to a step in the navigation or understanding
of the code. However, an edit could serve as a means of
understanding the code. For example, Davies observed that
some programmers inserted debug statements to understand
a program’s execution [35]. We believe this is not a problem.
Of the sample of traces we have examined in the in-depth
analysis, none of which indicated an excessive number of
unrelated files having been edited. Therefore, there does not
seem to be evidence of this debugging practice in our data.

Future work

One promising area to study on the interaction history is
how programmers navigate, which was studied in a prior
study [23]. In the in-depth analysis of RQ1, we observed
different ways programmers arrive at a file in Eclipse (the
third last column in Table IV): through the editor, Pack-
age Explorer (which displays the Java package, class, and
method structure), Content Outline View (which displays
program elements such as methods and fields in a Java
class), Search View (which displays search result through a
textual search), and CVS Synchronize View (which displays
the differences between the files in the workspace and
those in CVS.15) In addition, not surprisingly, we observed
differences in the program elements leading to a particular
element: from the superclass, the structural parent, or a
referenced element. It would be interesting to analyze this in
a more quantitative manner and large scale using the traces.

15http://www.nongnu.org/cvs/
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VII. CONCLUSION

We found significant differences among enhancement
tasks, minor, and major bug fixes in terms of when edit
events on program elements happen. Knowing such editing
patterns could help software development tool designers
in various contexts. For example, knowing a programming
session being EDIT-FIRST, the development environment
could show more of the editing related features, rather
than the navigation related features. The data we used in
our analysis were a recent form of software archive, over
4000 interaction traces that are attachments of bug reports.
To our knowledge, this is the largest set of public editing
traces of programmers. This data is a rich form of data for
other researchers to use for empirical study purposes and to
evaluate interaction history analysis.

For others wishing to replicate our study, we have made
all the data and R scripts available.16
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