
Remixing Visualization to Support Collaboration in Software Maintenance

Margaret-Anne Storey Chris Bennett R. Ian Bull Daniel M. German
Department of Computer Science, University of Victoria

{mstorey, cbennet, irbull, dmg}@uvic.ca

Abstract
We propose that collaborative software

visualization can improve team software maintenance.
We first review how visualization can support software
maintenance from the perspectives of system
understanding, process understanding and software
evolution. From this, we conclude that visualization
tools are rarely designed to provide explicit support
for collaborative authoring and sharing of views. We
then provide an overview of research from a Computer
Supported Cooperative Work perspective, and propose
that this research should be applied to software
visualization. We explore the opportunities and
challenges this research focus presents and conclude
that more attention paid to the social aspects of
software visualization should improve both individual
and team processes in software maintenance.

1. Introduction
Software maintenance is a cognitively challenging

task that benefits from effective tool support for
activities such as program understanding, debugging
and testing. Software maintenance tools can use
visualization to reveal information that is not obvious
from directly examining the system and related
artifacts. Despite the many novel visualization
techniques developed by researchers, uptake by
industry has been relatively slow. We speculate that
one reason may be a lack of attention to the social
aspects of software maintenance.

Software maintenance is inherently a social activity
- large systems typically involve teams of developers
and the participation of many stakeholders throughout
the software lifecycle [1]. Computer supported
collaborative work (CSCW) explores how tools can
more effectively support work practices within socio-
technical systems, such as software maintenance. To
date, there has been limited research on how tools
support collaborative software maintenance (some
exceptions being work by Ko et al. [2] and Whitehead
[3]). Even less research has explored how

visualizations can support collaborative software
maintenance.

In this paper, we explore the intersection of CSCW,
information visualization, and software maintenance
(Figure 1). We suggest that software visualization tool
designers borrow theories and tools from the
disciplines of social computing and CSCW. We
explore the opportunities and highlight the challenges
that this line of research introduces.

Figure 1: A Research Opportunity: Applying
CSCW and information visualization to

software maintenance

This paper is structured as follows. In Section 2, we
briefly review how visualization has been used to
support software maintenance. Next, we provide an
overview of the concepts, theories and tools from
CSCW research and examine how these have been
applied to software maintenance and information
visualization (Section 3). In Section 4, we consider the
role of CSCW research in how visualization supports
collaborative maintenance activities and explore some
opportunities and challenges that this presents. We
conclude the paper by proposing that research that
focuses on the social aspects of software visualization
will improve how teams and individuals carry out
software maintenance (Section 5).

978-1-4244-2655-3/08/$25.00 © 2008 IEEE FoSM 2008139

2. Visualization in software maintenance

Software maintenance requires an understanding of
both software systems and the processes by which they
are engineered. Since systems change over time, it is
also important to understand the evolution of both
systems and processes. Visualization has been applied
to software maintenance to communicate information
through images, diagrams, and animations. In this
section, we review selected visualization tools and
techniques that support understanding of the system,
process, and evolution.

2.1 Understanding the system

Understanding a system is a precursor to many
software maintenance activities, consuming more than
50% of reverse engineering effort [4]. Understanding
software is a cognitively challenging task that has
benefited from software visualization techniques.
Graphs (e.g. call graphs, class diagrams, and reverse
engineered sequence charts) are often used to visually
represent concepts and relationships. Some uses of
visualization include support for understanding static
structure, runtime behaviour, architecture, code
metrics, patterns, and re-design.

Understanding static structure is supported by tools
such as SHriMP [5] and Creole [6], which use nested
graph visualizations to explore objects and
relationships within a software system.

Dynamic analysis tools, such as SEAT [7], SCED
[8], and Jinsight [9], visualize application behaviour in
the form of a sequence diagram or call tree.
TraceCrawler [10] provides an interactive 3D
visualization of feature execution in the context of
static structure. Dynamic behaviour can also be
visualized during debugging by linking program
execution state to UML diagrams [11]. TPTP [12]
visualizes profiling and runtime performance.

Architecture and design recovery tools, such as Rigi
[13] and the Portable Bookshelf (PBS) [14], provide a
conceptual understanding at a higher level of
abstraction. Re-documentation tools, such as Reef [15]
and Doxygen [16], capture the results of architecture
and design recovery.

Code metrics are frequently used as a quality
assurance tool. Bieman et al. describes the use of box
plots and class diagrams to highlight change-prone
classes and their interdependencies [17]. Systa et al.
use graph visualization to show complexity coupling,
and inheritance metrics [18].

Pattern recovery is a form of design reconstruction
that is particularly relevant to OO systems [19]. Trese
and Tilley suggest that a visualization that documents

the pattern is preferable to scattered code comments
[19].

Design, or at least re-design, is arguably part of
software maintenance. Tools, such as Rational Rose
XDE [20], support visual design activity using UML
visualizations. Pounamu [21] extends this to support
distributed collaborative design activities.

2.2 Understanding the process

An understanding of the software engineering
process supports project management, quality
assurance, and day to day maintenance tasks.
Visualization contributes to this through, for example,
a graphical summary of test coverage, team
assignments, and defects.

Panas et al. propose a 3D visual approach to depict
software cost-related information in support of
software maintenance [22]. The Lagrein tool [23] helps
managers and developers visualize user requirements
and development efforts. The Xia tool [24] visualizes
code ownership of system artifacts.

Process management can also benefit from
visualization. Project plans are often visualized as
Gantt or Pert charts to show task dependencies and task
progress. Change requests, change traffic, and
configuration management are candidates for
visualization. For example, Palantir [25] provides
visualizations of configuration management activities.
Jazz [26] displays charts of the maintenance process,
e.g. work-items completed and health of the build.

Visualization has also been used in testing. Jones et
al. describe a program named TARANTULA that
provides a SeeSoft [27] style visualization of test
coverage, mapping test state to source code [28].

2.3 Understanding evolution

Understanding the evolution of a system and the
processes by which it was engineered is a precursor to
many software maintenance activities. Some software
maintenance tools provide engineers with
visualizations of how systems evolve over time and
how development teams work and collaborate.

Tools such as SeeSoft [27] and Beagle [29] mine
source control repositories to visualize source code
evolution. CodeCrawler [30] visualizes software
evolution as a matrix of class attributes changing over
time. SoftChange [31] uses histograms and graphs to
show evolution statistics and relationships between
files and authors. Ogawa [32] uses small multiples to
provide a summary view of social groups that interact
over the lifetime of a project. For more information on
visualization of human activities in software
development, see Storey et al. [33].

140

2.4 Adoption

To better understand the adoption of software
visualization tools, Basil and Keller [34] surveyed
commercial and research users of such tools. They
determined that these tools are particularly useful in
software maintenance, rather than development, and
noted that code comprehension was the primary use of
these tools. Other researchers have found that
visualizations are appropriate for some tasks but text-
based solutions may be preferred for others [35], an
important consideration for tool designers.

While visualization has played a key role in many
software maintenance activities, industrial adoption of
many visual techniques is still sparse. Adoption can be
slow when the tools proposed are not industrial
strength nor integrated with commonly used
environments. Few tools are designed with an adequate
consideration of the social aspects of maintenance,
such as communication, awareness, and collaboration.
CSCW is a field of research dedicated to exploring
how technology can facilitate collaborative work. The
application of lessons learned from CSCW holds great
potential for addressing social barriers to the adoption
of visualization tools in software maintenance.

3. CSCW
Research on improving human computer interaction

has shifted from considering human factors to
enhancing systems for human actors [36]. In this
section, we provide a brief overview of the concepts,
tools and evaluation approaches within CSCW. We
then examine the role that CSCW research plays in
information visualization and software maintenance.

3.1 Concepts and tools

Figure 2: Time / Space Groupware Matrix (from
Wikipedia, in the public domain)

Key concepts in CSCW include communication,
location, and synchronization. Communication refers
to how humans communicate, e.g. face-to-face or using
audio, video or text. Location describes whether the
collaborating individuals are in the same place or
remotely located from one another. Synchronization
describes whether participants are collaborating in a
synchronous fashion (at the same time) or
asynchronously (different times). Figure 2 displays a
time/space matrix showing variations on collaboration
and types of tools that can support collaborative work
[37].

Additional concepts in CSCW include awareness
and coordination. Awareness refers to “an
understanding of the activities of others, which
provides a context for your own activity” [38]. We
may take awareness for granted when we work in the
same location where gesturing is easy and one can look
over a co-worker’s shoulder. However, many systems
lack support for awareness, a problem when people try
to use these systems for distributed collaboration.
Distributed collaboration relies on explicit cues to
create awareness, e.g. indicating who is currently
working with a shared artifact and using changing
colour as a feedthrough mechanism to alert users when
an artifact has been changed.

Coordination refers to what people have to do in
order to work together on a task. Articulation work
[38] is additional work beyond the defined formal
work task (e.g. allocation of tasks, distribution of
resources, and scheduling of tasks). Although, much of
the CSCW literature seems to imply that people
willingly or intentionally cooperate, this is often not
the case and collaboration may occur unintentionally
and even within a competitive environment [39].

Another aspect that CSCW tool designers need to
consider is the modes of work that groups engage in,
and their motivation for the tasks they do. McGrath
suggests the following modes: inception, execution,
problem-solving and conflict resolution [40]. From his
studies of groups in the wild, he identifies three
functions of group work: the intended production
work, work that improves group well-being, and work
that provides member-support. The last two should
also be considered when designing tools.

CSCW research has produced a variety of tools that
use visualization to support the concepts described
above. Groupware refers to software that supports
group interactions [41]. Telepointers, avatars and video
images are examples of how a user can be embodied
within the groupware system. Visualization techniques
are also often used to show feedthrough on shared
artifacts, and multiple views are particularly important

141

for showing different aspects of the shared information
and how collaboration is occurring.

In the next section we review how CSCW has been
applied to both software maintenance and to
information visualization.

3.2 Applying CSCW research

The notion of collaboration in software maintenance
is not new. Parnas noted that assigning programmers to
modules with low coupling would decrease
communication [42]. Brooks talks about the challenges
in collaborative work [43], and Olson et al. discovered
that distance matters in collaborative environments
and does slow down development work [44]. Ye’s
socio-technical framework on programmers
emphasizes that tools should be used to reduce
interruptions (e.g. through showing awareness) and
should help in finding experts (potentially by showing
experts visually) [45]. Ye also talks about the
importance of tools fitting into the existing
environment. In addition to coding, there are many
activities in software maintenance that are entirely, or
to a large degree, collaborative, such as code review,
redesign and testing.

CSCW has also been applied in the field of
information visualization. Collaborative visualization
refers to a subset of CSCW applications in which
control over parameters or products of the scientific or
information visualization process is shared [46]. When
exploring collaborative visualizations, we need to
consider who authors and uses these views.
Visualizations are not collaborative if they are created
by an individual for their own use. However,
individually authored visualizations can be shared.
Collaboration increases if they are created and edited
in a collaborative manner. Interestingly, in Bly’s
studies on how people use diagrams, she noticed that
the act of creating a drawing was often more important
than the final diagram itself [47].

Collaborative visualization can also be discussed
with respect to the dimensions in the time/space matrix
(Figure 2). Brodlie [48] indicates that many
visualizations can be shared by having a group of users
sit around a single workstation, with one user ’driving’
the visualization and other participants observing and
commenting (i.e. synchronous and co-located). To
support distributed collaboration, users may use
application or desktop sharing tools so that the
distributed collaborators can view the same image.
These systems are typically limited to one controlling
user. More sophisticated media for supporting
distributed collaboration include Access Grid [1],
Skype, WebEx, and Google Docs.

Some example application areas for collaborative
visualization include multiplayer online games, multi-
user enabling of single user applications, collaborative
problem solving tools, and virtual reality environments
[5]. Collaborative visualization has also shown promise
in the scientific visualization community [3] where
scientists collaborate around scientific data in an
distributed / asynchronous manner. ManyEyes [49] is a
successful example of a tool for collaborative creation
of shared information visualizations. Working over the
web, ManyEyes allows a user to upload and share a
data source with related visualizations. It supports a
discussion board for users to comment on views and
allows an existing visualization to be used as the
starting point for a new one. Other tools that support
sharing of visualizations include Swivel [50], Sense.us
[51], and DecisionSite [52].

In the next section we explore how ideas from
collaborative visualization can be applied to software
maintenance.

4. Collaborative visualization for software
maintenance

In this section, we speculate on how collaborative
visualization can play a larger role in software
maintenance. While many software visualization tools
are suited for individuals, and some offer support to
export or share views, very few tools explicitly support
the collaborative authoring of visualizations for the
purpose of understanding in software maintenance. We
first review how visualization is used in a collaborative
manner in software maintenance today. We then
suggest how its use may be broadened and mention
challenges that researchers are likely to face.

4.1 Research emphasis to date

The task of understanding a large software system is
often distributed among diverse stakeholders that may
or may not be collaborating at the same time or place.
To exchange and share information, developers may
use diagrams or other artifacts to collaborate, e.g.
whiteboard sketches, remote application sharing, or
projecting a UML design during a meeting. However,
in contrast to software engineering tools that support
distributed asynchronous maintenance (e.g. version
control, bug tracking systems, notification tools, and
software planning applications), most software
visualization tools are designed for the individual
maintainer with little explicit support for collaborative
creation or use.

In Table 1, we categorize the tools mentioned in
Section 2 with respect to their ability to collaboratively
create and share visualizations. The tools are placed
within a matrix that cross-references their level of

142

collaboration (i.e. individual creation and use,
individual creation with shared use, and shared
creation and use) to what is being visualized (systems,
processes, system evolution, or process evolution).
Note that this table is not meant to provide an
exhaustive survey of tools, but rather to provoke
discussion on how current tools rarely emphasize
collaborative authoring and use. We also noted from
our literature review that the collaborative aspect is
rarely mentioned in studies that evaluated software
visualization tools.

In Table 1, levels of collaboration are shown as
rows. Since each level of collaboration subsumes lower
levels of collaboration (e.g. a tool that supports the
shared use of visualizations also supports individual
use), a tool appears in at most one row. While one
could argue that any visualization can be shared by
emailing a screen capture, only when a tool explicitly
supports sharing of visualizations do we include it in
rows 2 or 3. Areas of understanding are shown in four
columns and a tool may appear in multiple columns
(e.g. if a tool supports both process and system
understanding).

Not surprisingly, the largest representation in this
table is with tools that support individual system
understanding. These include Rigi, TPTP, and SEAT.
A number of tools also support individual visualization
of processes and evolution (e.g. Lagrein, which
supports both process and process evolution
understanding, and SoftChange, which focuses on
evolution understanding).

The second row in Table 1 shows only tools that
have some form of built-in support for sharing
visualizations, e.g. by exporting them to files, through
a web interface that accesses a shared repository, or
through email. Creole provides explicit support for
sharing software views via email, through a filmstrip
feature [53]. With Creole, the user can email snapshots

to collaborators; the snapshot can be either viewed as a
static image or reloaded in Creole as an interactive
visualization. The Portable Bookshelf was designed to
support dissemination of higher level design
knowledge in the form of shared graphs accessible
through a web interface. Doxygen produces sharable
HTML-based visualizations of source code (e.g. call
graphs). Code Swarms’ animations are accessible via
the web to illustrate the evolution of developer
interactions within a software application. Palantir
visualizes shared use of configuration management
workspaces, ensuring that all users are simultaneously
aware of potential conflicts. Xia supports the sharing of
treemaps and other graphs to reveal system and process
evolution information.

Table 1: Categorization of Software Maintenance Tools

Software Systems Processes Software System
Evolution

Process Evolution

Individual
creation and use

Jinsight, TPTP,
Rigi, PBS, SCED,
Box Plot Metrics,
CodeCrawler,
TraceCrawler, …

Lagrein,
Tarantula,
...

SeeSoft,
Beagle,
SoftChange,
…

Lagrein,
SoftChange,
…

Individually
creation and
shared use

PBS, Creole,
Doxygen,
…

Palantir
Jazz
…

Xia
…

Xia,
CodeSwarms,
…

Shared creation
and use

Reef,
Pounamu

None identified None identified None identified

Our search for tools that support both collaborative
authoring and use of visualizations turned up few
examples. Pounamu supports the specification of
collaborative visual language-oriented tools. The
authors describe a collaborative UML design tool
supporting both asynchronous and synchronous editing
of designs. The Reef tool provides support for the
automatic generation of documentation that can be
distributed to maintainers for verification and update.
However, this tool is currently a research prototype and
has not yet been fully implemented or evaluated.

This categorization, although limited to a small
selection of tools, highlights a lack of research
attention to collaborative aspects of software
maintenance. While this may be considered a
shortcoming, it can also be viewed as a research
opportunity filled with a number of exciting
challenges.

4.2 Research challenges

There are several challenges that must be considered
for collaborative visualization to offer enhanced

143

support within software maintenance. These challenges
are organized by the areas introduced in Section 2.

4.2.1 Complexity in system understanding and tool
use

Understanding a system is a complex cognitive
activity, where the cognitive processes may be
distributed across members of a team [45]. System
understanding may also be distributed between internal
structures (in the minds of the programmers) and
external structures (captured by the tools). Sharing this
distributed information requires sophisticated tool
support that recognizes that some understanding is
better held in the minds of the programmers.

Complex system interactions may lead to complex
visualizations. These views can be difficult to interpret,
especially for a developer who is not familiar with this
type of visualization. Improved support for explaining
how visualizations are created may increase their
power to communicate complex facts across teams.

There is also a challenge for developers learning
complex visualization environments. A visualization
may only be accessible within the tool that was used to
create it. Such tools require expertise, and if
understanding a visualization requires more effort than
understanding the system under study, it is unlikely
that view will be adopted or shared.

Thus, collaborative environments need to be
designed so that all members of the team can benefit
from the visualizations created, otherwise, some
members of a team may not embrace their use.

4.2.2 Visualization and the workflow of software
maintainers

An important aspect of developing effective
visualization tools is to understand how the tools will
be embedded within the work practices and the
workflow of the maintainers. Although there are
several studies that document software maintenance
work practices and workflow (Section 3.2), few have
looked explicitly at the role that visualizations can
play.

The CSCW research literature already gives some
guidance with respect to tool support for awareness
and coordination. Visualizations for showing
awareness and assisting coordination during
development have been proposed (e.g. Augur [54] and
Tukan [55]), but there are other shared tasks that could
benefit from collaborative techniques, e.g. exploring
and discussing sequence diagrams and call graphs.

Another aspect to explore is how visualizations can
be used to support communication across diverse
stakeholders. For example, a software visualization
could be used as a boundary object, where one

stakeholder uses a visualization for one purpose, while
another uses it for a different purpose (e.g. a developer
may use a visualization for impact analysis, while a
manager may use the same visualization for resource
allocation) [56]. Lightweight tools, such as those
proposed in Section 4.2.1, could further support how
information visualizations are shared by a
heterogeneous audience.

4.2.3 Visualization and the evolutionary nature of
software development

Software is expected to evolve if it is to continue to
satisfy the needs of its users [57]. While some views
are ephemeral and meant to be thrown away, many
visualizations are expected to remain up-to-date as the
system evolves. Others are intended to be saved as a
record, documenting the system at a particular time.
These archival views, like many other artifacts created
during software development, can be used to explain
how a system has evolved. To achieve this, they should
be stored with the source code and other
documentation using a version controlled repository.

Visualizations often lack metadata such as their
creation date or whether the visualization is ephemeral,
should be archived, or is expected to be updated as the
system evolves. This information becomes crucial
when visualizations are to be shared or saved for future
use.

Archiving visualizations is not trivial.
Visualizations are often stored in a proprietary format.
Such visualization require access to the software used
to create them. Over time, this software may become
unavailable, perhaps due to license restrictions or
changes to the surrounding development environment.

Alternatively, an archived view might use a
programmatic description of how the visualization was
computed, and might require re-analysis of the
software system to render it (e.g. necessitating access
to the source code as it was at the moment the
visualization was created). This might be difficult or
impossible to achieve unless anticipated by the tools
and infrastructure within the maintenance environment.
We propose that visualizations should not be trapped in
their formats, nor should they be dependent on the
tools that were used to create them.

In addition to archived visualizations, some
visualizations are expected to stay synchronized with
an evolving system. Such visualizations are living
documents, and should require little attention from the
developer, yet provide an always up-to-date view of
the system. This is obviously a significant challenge to
designers of visualization tools, and some manual
manipulation may be necessary.

144

4.3 Research Opportunities
The realms of social computing, Web 2.0, and today’s
familiar and yet sophisticated software packages,
suggest a number of opportunities that may be worth
exploring to improve collaborative visualization in
software maintenance. We look at some of these
opportunities, once again organizing these by the areas
introduced in Section 2.

4.3.1 Collaborative system understanding:
lightweight and malleable visualizations

Software visualization tools and techniques can be
complex to learn and to use. Lightweight visualizations
can improve adoption. As their name implies,
lightweight visualizations are expected to be simple
and require few resources to be created and
manipulated. Malleable visualizations are those that
can be easily altered and adapted by the user for her
specific needs.

Today’s use of the internet has resulted in a
paradigm shift, referred to as Web 2.0, in how we use
computing, especially over the web and on mobile
devices. Speaking at IBM CASCON 2007, Carol
Jones [58] suggested that Web 2.0 is the intersection of
three things: simple and efficient user interfaces (e.g.
REST and AJAX), the delivery of software as a service
rather than a product (e.g. RSS feeds, mash-up
capability), and the support of community (e.g. through
blogs and wikis). She went on to describe the
characteristics of successful Web 2.0 applications.
Individuals must benefit from a tool, regardless of
broader participation, but they must also see improved
value when others participate. A simple user
experience is more important than advanced or
complex features. The use of self-organizing methods
(e.g. tagging) can build community knowledge. Users
must be able to remix available services (e.g. through
mash-ups). Finally, access to data is critical and
applications are typically highly data-driven (e.g.
Google Search, Google Maps and Facebook).

Web 2.0 approaches and technologies could be used
to create lightweight visualization services. Such
services can be easily configured and adapted to the
particular needs of a user. The web already plays a key
role in the collaborative authoring of text through, for
example, wikis and Google Docs. Online visualization
tools such as ManyEyes and Swivel provide
collaborative visualizations of general data. This
lightweight, inherently distributed approach can assist
software maintainers with the design and sharing of
collaborative visualizations.

Taking this idea a step further, lightweight
visualization components and data sources could be
combined to create mash-ups to satisfy new

requirements and individual user’s needs. Mash-ups
often lead to functionality never imagined by the
original service providers. Moreover, developers could
share their mash-ups and collaboratively construct
them.

4.3.2 Collaborative system understanding:
borrowing from the desktop

The web as a creation and delivery platform may
not offer sufficient integration with the tools that
maintainers already use, so other avenues for
improving tools should also be explored. We suggest
that tool designers consider borrowing ideas for
collaborative visualization from today’s powerful
client side software. One idea from Adobe Photoshop
software worth exploring is the use of layers.

Different layers can be added on top of a
visualization, each providing new information, such as
annotations or new visual elements. Layers can also be
used to hide areas of the visualization that are of no
interest and even apply operations on the layers to
generate a new visualization (such as using a new
rendering algorithm on a previously rendered graph).
When used by an individual, each layer, or group of
layers, can correspond to a different task. The user
could hide or show a layer depending on the task at
hand.

In a shared visualization, each member could create
personalized layers. Layers could also be used as a
communication mechanism between different members
of a team. For example, a layer could contain
annotations that document how the visualization was
created and what information is being communicated.
Layers could also facilitate simultaneous editing of
visualizations.

Another idea we can borrow from common desktop
tools is the use of lightweight viewers for
visualizations, such as Acrobat Reader for PDF files.
Lightweight viewers should be easy to install and use
(perhaps as plug-ins to typical tools such as web
browsers or Eclipse). This would make it simple for a
casual user to inspect or compare archived
visualizations.

Other ideas that might be worth exploring include
borrowing design and collaboration techniques from
the realms of collaborative scientific visualization
software and multi-player games.

4.3.3 Understanding workflow: Empirical Studies
in Software Maintenance

Evaluating CSCW tools can be a challenge because
lab studies often factor out behaviour and tasks that are
fundamental to collaborative group activity. For
example, McGrath [40] noted that group functions of

145

improving group health and providing member-support
do not surface in a lab setting. Yet factors such as these
are critical if the new tools are to be adopted in a
collaborative setting.

Research methods from the social sciences are
therefore more suitable for understanding tool
requirements and evaluating tools than approaches
from cognitive psychology. One methodology for
studying group behaviour is grounded theory [59],
which does not presume that a theory is true or false.
Instead, it matches the data that has been collected so
far and the theory may have to be adapted to match
new findings. Some computer scientists struggle with
the use of these methodologies (due perhaps to the less
prescriptive nature of the findings). However, such
approaches can provide a rich understanding of how a
tool may support team work practices, for example by
documenting the work flows that provide context for a
tool’s use.

Studies that focus on tool-related requirements in
software maintenance are becoming more prevalent.
Ko et al. [2] discuss requirements for software
maintenance environments. Further studies are needed
to explore how diagrams, and even text documentation,
are used in teams to enhance program understanding.
The findings from these studies, using methods from
the social sciences, can then be used to improve the
design of collaborative software visualization tools.

4.3.4 Supporting view evolution: versioning and
differencing visualizations

Like software artifacts, when visualizations become
historical artifacts, they need to be archived and
versioned. The current practice is to store
visualizations as binary files in a version control
system, with little or no metadata to describe their
creation or contents. This makes it difficult to automate
the comparison or evaluation of two visualizations.
Comparing the differences between non-textual
software artifacts is another opportunity for research
that has been mostly overlooked. The lightweight
viewers mentioned in Section 4.3.1 could facilitate
manual inspection of differences between saved views,
if no differencing tool is available.

When visualizations are archived, it is also
important to be able to query them. Metadata is one
potential solution, but such metadata usually provides
only a high-level description. It might be worth
studying methods for querying archived or current
visualizations to discover their meaning and content
(e.g. “find all visualizations that show the interactions
of this class in the system”). Such a query would
require that the visualization be stored in an open

format (such as XML) that includes a description of the
visualization’s semantics.

Another research opportunity is to develop a
mechanism that computes how an archived
visualization can be applied to a later version of a
system. Related to this would be a facility to reapply an
archived view to a new version of the system such that
the results would still be informative.

5. Concluding Remarks
In this paper, we proposed that designers of

visualization tools for software maintenance could
benefit from looking at the social and collaborative
aspects of their field. It may be true that a
visualization can portray a thousand words, but if it
does not effectively support communication across
teams, it may fall short of its goal. Visualization tools
that are cumbersome to use, or that fail to support the
way that software maintainers work, may be rejected or
lead to flawed conclusions about their potential
benefits. Improving how visualization tools work in a
collaborative setting has the added benefit of helping
individual maintainers understand a system authored
by others.

Current visualization tools for software maintenance
are rarely designed to provide explicit support for
collaboration. We suggest that researchers adopt
methodologies from CSCW and the social sciences
during requirements gathering, and for the evaluation
of collaborative visualizations. Researchers can also
learn from the rise of social computing in general, as
exemplified by recent trends in Web 2.0 technologies
and tools.

Most of today’s software maintenance environments
are designed from the perspective of a space, where
information on the code and development processes are
stored. We suggest that these tools could be improved
if they were designed as a place, that supports,
encourages, and enhances collaboration [38]. The
effectiveness and adoption of visualization tools for
software maintenance could be dramatically improved
if researchers and tool designers make this shift in
perspective.

146

6. References

[1] J. Sillito and E. Wynn, “The social context of
software maintenance,” in Proceedings of IEEE International
Conference on Software Maintenance (ICSM07), Oct. 2007,
pp. 325–334.
[2] A. J. Ko, R. DeLine, and G. Venolia, “Information
needs in collocated software development teams,” in
Proceedings of the 29th international conference on Software
Engineering (ICSE'07). Washington, DC, USA: IEEE
Computer Society, 2007, pp. 344–353.
[3] J. Whitehead, “Collaboration in software
engineering: A roadmap,” in Future of Software Engineering
(FOSE'07). Washington, DC, USA: IEEE Computer Society,
2007, pp. 214–225.
[4] R. Fjeldstad and W. Hamlen, “Application
Program Maintenance Study: Report to Our Respondents,” in
Tutorial on Software Maintenance, IEEE Computer Society
Press, 1982, pp. 13–30.
[5] M. Storey, C. Best, J. Michaud, D. Rayside,
M. Litoiu, and M. Musen, “SHriMP views: an interactive
environment for information visualization and navigation,” in
Proceedings of Conference on Human Factors in Computing
Systems. ACM Press New York, NY, USA, 2002, pp. 520–
521.
[6] R. Lintern, J. Michaud, M. Storey, and X. Wu,
“Plugging-in visualization: experiences integrating a
visualization tool with Eclipse,” in Proceedings of the 2003
ACM symposium on Software visualization. ACM Press New
York, NY, USA, 2003, p. 47.
[7] A. Hamou-Lhadj, T. C. Lethbridge, and L. Fu,
“SEAT: A usable trace analysis tool,” in Proceedings of the
13th International Workshop on Program Comprehension
(IWPC'05). St. Louis, USA: IEEE Computer Society, 2005,
pp. 157–160.
[8] T. Systä, “Understanding the Behavior of Java
Programs,” in Proceedings of the 7th Working Conference on
Reverse Engineering (WCRE). Brisbane, Australia: IEEE
Computer Society, 2000, pp. 214–223.
[9] W. D. Pauw, E. Jensen, N. Mitchell, G. Sevitsky,
J. M. Vlissides, and J. Yang, “Visualizing the Execution of
Java Programs,” in Revised Lectures on Software
Visualization, International Seminar. London, UK: Springer-
Verlag, 2001, pp. 151–162.
[10] O. Greevy, M. Lanza, and C. Wysseier,
“Visualizing live software systems in 3D,” in Proceedings of
the 2006 ACM symposium on Software Visualization. ACM
Press New York, NY, USA, 2006, pp. 47–56.
[11] T. Jacobs and B. Musial, “Interactive visual
debugging with UML,” in Proceedings of the 2003 ACM
symposium on Software Visualization (SoftViz'03). New
York, NY, USA: ACM, 2003, pp. 115–122.
[12] The Eclipse Foundation, “Eclipse Test &
Performance Tools Platform Project,”
http://www.eclipse.org/tptp/, [April 2008].
[13] H. A. Müller and K. Klashinsky, “Rigi-a system for
programming-in-the-large,” in Proceedings of the 10th
International Conference on Software Engineering
(ICSE'88). Los Alamitos, CA, USA: IEEE Computer Society
Press, 1988, pp. 80–86.

[14] P. Finnigan, R. Holt, I. Kalas, S. Kerr,
K. Kontogiannis, H. Muller, J. Mylopoulos, S. Perelgut,
M. Stanley, and K. Wong, “The Portable Bookshelf,” IBM
Systems Journal, vol. 36, no. 4, pp. 564–593, 1997.
[15] P. Kaminski, “Reef,”
http://www.ideanest.com/reef/index.html, [June 2008].
[16] Dimitri van Heesch, “Doxygen - source code
documentation generator tool,” http://www.doxygen.org,
[June 2008].
[17] J. Bieman, A. Andrews, and H. Yang,
“Understanding change-proneness in OO software through
visualization,” in Proceedings of 11th IEEE International
Workshop on Program Comprehension (IWPC'03), 2003, pp.
44–53.
[18] T. Systa, P. Yu, and H. Muller, “Analyzing Java
software by combining metrics and program visualization,”
in Proceedings of 4th European Conference on Software
Maintenance and Reengineering (CSMR 2000), 2000, pp.
199–208.
[19] T. Trese and S. Tilley, “Documenting software
systems with views V: Towards visual documentation of
design patterns as an aid to program understanding,” in
Proceedings of the 25th annual ACM international
conference on Design of communication. ACM Press New
York, NY, USA, 2007, pp. 103–112.
[20] “IBM Rational Rose XDE,” http://www-
306.ibm.com/software/awdtools/developer/rosexde/, [June
2008].
[21] N. Zhu, J. Grundy, and J. Hosking, “Pounamu: A
Meta-Yool for Multi-View Visual Language Environment
Construction,” in Proceedings of IEEE symposium on Visual
Languages and Human Centric Computing, 2004, pp. 254–
256.
[22] T. Panas, R. Berrigan, and J. Grundy, “A 3D
metaphor for software production visualization,” in
Proceedings of Seventh International Conference on
Information Visualization (IV 2003), July 2003, pp. 314–319.
[23] A. Jermakovics, M. Scotto, A. Sillitti, and
G. Succi, “Lagrein: Visualizing User Requirements and
Development Effort,” in Proceedings of 15th International
Conference on Program Comprehension (ICPC'07), 2007.
[24] X. Wu, A. Murray, M. Storey, and R. Lintern, “A
reverse engineering approach to support software
maintenance: Version control knowledge extraction,” in
Proceedings of 11th Working Conference on Reverse
Engineering (WCRE'04), 2004, pp. 90–99.
[25] A. Sarma and A. van der Hoek, “Visualizing
parallel workspace activities,” IASTED International
Conference on Software Engineering and Applications
(SEA), pp. 435–440, 2003.
[26] R. Frost, “Jazz and the Eclipse Way of
Collaboration,” Software, IEEE, vol. 24, no. 6, pp. 114–117,
2007.
[27] S. Eick, J. Steffen, and E. Sumner Jr, “Seesoft-a
tool for visualizing line oriented software statistics,” IEEE
Transactions on Software Engineering, vol. 18, no. 11, pp.
957–968, 1992.
[28] J. Jones, M. Harrold, and J. Stasko, “Visualization
for Fault Localization,” in Proceedings of ICSE 2001
Workshop on Software Visualization, Toronto, Ontario,
Canada, 2001, pp. 71–75.

147

[29] M. Godfrey and Q. Tu, “Growth, evolution, and
structural change in open source software,” in Proceedings of
the 4th International Workshop on Principles of Software
Evolution. ACM New York, NY, USA, 2001, pp. 103–106.
[30] M. Lanza and S. Ducasse, Tools for Software
Maintenance and Reengineering, RCOST/Software
Technology Series, ch. Codecrawler-an extensible and
language independent 2D and 3D software visualization tool,
pp. 74–94.
[31] D. German and A. Hindle, “Visualizing the
Evolution of Software Using Softchange,” International
Journal of Software Engineering and Knowledge
Engineering, vol. 16, no. 1, pp. 5–21, 2006.
[32] M. Ogawa, K. Ma, C. Bird, P. Devanbu, and
A. Gourley, “Visualizing social interaction in open source
software projects,” in Proceedings of 6th International Asia-
Pacific Symposium on Visualization (APVIS'07), 2007, pp.
25–32.
[33] M. Storey, D. Cubranic, and D. German, “Ón the
use of visualization to support awareness of human activities
in software development: a survey and a framework,” in
Proceedings of the 2005 ACM symposium on Software
visualization. ACM Press New York, NY, USA, 2005, pp.
193–202.
[34] S. Bassil and R. Keller, “Software visualization
tools: Survey and analysis,” in Proceedings of International
Workshop on Program Comprehension (IWPC'01), 2001, pp.
7–17.
[35] T. Hendrix, S. Maghsoodloo, and M. McKinney,
“Do visualizations improve program comprehensibility?
experiments with control structure diagrams for Java,” ACM
SIGCSE Bulletin, vol. 32, no. 1, pp. 382–386, 2000.
[36] H. Ishii, “Tangible bits: designing the seamless
interface between people, bits, and atoms,” in Proceedings of
the 8th international conference on Intelligent user interfaces
(IUI'03). New York, NY, USA: ACM, 2003, pp. 3–3.
[37] Wikipedia, http://en.wikipedia.org/wiki/CSCW,
[June 2008].
[38] P. Dourish and V. Bellotti, “Awareness and
coordination in shared workspaces,” in Proceedings of the
1992 ACM conference on Computer-supported cooperative
work (CSCW'92). New York, NY, USA: ACM, 1992, pp.
107–114.
[39] L. C. Rosenberg, “Update on national science
foundation funding of the “collaboratory”,” Commun. ACM,
vol. 34, no. 12, p. 83, 1991.
[40] J. McGrath, “Time, Interaction, and Performance
(TIP): A Theory of Groups,” Small Group Research, vol. 22,
no. 2, p. 147, 1991.
[41] C. A. Ellis, S. J. Gibbs, and G. Rein, “Groupware:
some issues and experiences,” Communications of the ACM,
vol. 34, no. 1, pp. 39–58, 1991.
[42] D. L. Parnas, “On the criteria to be used in
decomposing systems into modules,” Classics in software
engineering, pp. 139–150, 1979.
[43] R. Brooks, “Towards a theory of the
comprehension of computer programs,” International
Journal of Man-Machine Studies, vol. 18, pp. 543–554, 1983.

[44] G. Olson and J. Olson, “Distance Matters,”
Human-Computer Interaction, vol. 15, no. 2/3, pp. 139–178,
2000.
[45] Y. Ye, Y. Yamamoto, and K. Nakakoji, “A socio-
technical framework for supporting programmers,” in
Proceedings of the the 6th joint meeting of the European
software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering
(ESEC-FSE'07). New York, NY, USA: ACM, 2007, pp.
351–360.
[46] G. Johnson, “Collaborative visualization 101,”
ACM SIGGRAPH - Computer Graphics, vol. 32, no. 2, pp.
8–11, may 1998.
[47] S. A. Bly, “A use of drawing surfaces in different
collaborative settings,” in Proceedings of the 1988 ACM
conference on Computer-supported cooperative work
(CSCW'88). New York, NY, USA: ACM, 1988, pp. 250–
256.
[48] K. Brodlie, D. Duce, J. Gallop, J. Walton, and
J. Wood, “Distributed and Collaborative Visualization,”
Computer Graphics Forum, vol. 23, no. 2, pp. 223–251,
2004.
[49] M. Wattenberg, J. Kriss, and M. McKeon,
“ManyEyes: A Site for Visualization at Internet Scale,” IEEE
Transactions on Visualization and Computer Graphics,
vol. 13, no. 6, pp. 1121–1128, 2007.
[50] “Swivel website,” http://www.swivel.com/, [June
2008].
[51] J. Heer, F. B. Viégas, and M. Wattenberg,
“Voyagers and voyeurs: Supporting asynchronous
collaborative information visualization,” in Proceedings of
the SIGCHI conference on Human factors in computing
systems (CHI'07). New York, NY, USA: ACM, 2007, pp.
1029–1038.
[52] “DecisionSite website,”
http://spotfire.tibco.com/products/decisionsite.cfm, [June
2008].
[53] “Creole website,”
http://www.thechiselgroup.org/creole, [June 2008].
[54] J. Tullio and E. Mynatt, “Use and Implications of a
Shared, Forecasting Calendar,” Lecture Notes in Computer
Science, vol. 4662, p. 269, 2007.
[55] T. Schümmer and J. M. Haake, “Supporting
distributed software development by modes of
collaboration,” in Proceedings of the seventh conference on
European Conference on Computer Supported Cooperative
Work (ECSCW'01). Norwell, MA, USA: Kluwer Academic
Publishers, 2001, pp. 79–98.
[56] G. C. Bowker and S. L. Star, Sorting Things Out:
Classification and Its Consequences (Inside Technology).
The MIT Press, October 1999.
[57] M. Lehman, “Programs, life cycles, and laws of
software evolution,” Proceedings of the IEEE, vol. 68, no. 9,
pp. 1060–1076, Sept. 1980.
[58] “Cascon 2007 Speakers,” https://www-
927.ibm.com/ibm/cas/cascon/speakers/index.shtml, [June
2008].
[59] B. Glasser and A. Strauss, “The discovery of
grounded theory,” The discovery of grounded theory, vol. 16,
no. 1, 1967.

148

