
Automatically Detecting and Describing High Level
Actions within Methods∗

Giriprasad Sridhara, Lori Pollock and K. Vijay-Shanker
Department of Computer and Information Sciences, University of Delaware

Newark, DE 19716 USA
{gsridhar, pollock, vijay}@cis.udel.edu

ABSTRACT
One approach to easing program comprehension is to reduce
the amount of code that a developer has to read. Describing
the high level abstract algorithmic actions associated with
code fragments using succinct natural language phrases po-
tentially enables a newcomer to focus on fewer and more ab-
stract concepts when trying to understand a given method.
Unfortunately, such descriptions are typically missing be-
cause it is tedious to create them manually.

We present an automatic technique for identifying code
fragments that implement high level abstractions of actions
and expressing them as a natural language description. Our
studies of 1000 Java programs indicate that our heuristics
for identifying code fragments implementing high level ac-
tions are widely applicable. Judgements of our generated
descriptions by 15 experienced Java programmers strongly
suggest that indeed they view the fragments that we iden-
tify as representing high level actions and our synthesized
descriptions accurately express the abstraction.
Categories and Subject Descriptors:
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement – Documentation
General Terms: Algorithms, Documentation
Keywords: Program Comprehension, Documentation

1. INTRODUCTION
It is almost axiomatic that software maintenance is re-

source intensive and program comprehension required for
maintenance is difficult and time-consuming, especially for
a newcomer, i.e., a developer faced with an unfamiliar sys-
tem or an unfamiliar component of a known system. One
approach to helping program comprehension is to reduce
the amount of code that a human has to read. For a given
method, a human could potentially focus on fewer and more
abstract actions at a time to understand the code if the code

∗This material is based upon work supported by the Na-
tional Science Foundation Grant No. CCF-0702401 and
CCF-0915803.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$10.00.

segments that implement higher level algorithmic steps were
delineated and described at a more abstract level. However,
such internal documentation is often missing or obsolete be-
cause it is tedious to manually create and keep current. Ad-
ditionally, extract method refactoring could also condense a
method’s code size by replacing the extracted method body
statements by a method call; however, this transformation
requires tedious analysis to maintain the original semantics.

In this paper, we present the first known technique to au-
tomatically identify groupings of statements (i.e., code frag-
ments) that collectively implement high level actions and to
then synthesize a succinct natural language description to
express each high level abstraction. By a high level action,
we mean a high level abstract algorithmic step of a method.
For example, our algorithm will automatically deduce that
the code fragment from lines 9 to 16 in Listing 1 implements
a more abstract action and then synthesize the natural lan-
guage description to represent that action:

9 for (int x = 0 ; x < vAttacks . s i z e () ; x++) {
10 WeaponAttackAction waa=vAttacks . elementAt (x) ;
11 f loat fDanger = getExpectedDamage (g , waa) ;
12 i f (fDanger > fH ighes t) {
13 fH ighes t = fDanger ;
14 waaHighest = waa ;
15 }
16 }
17 return waaHighest ;

Listing 1: Lines 9-16 implement high level action

Synthesized Description: Get weapon attack action ob-
ject (in vectorAttacks) with highest expected damage

The resulting phrase reduces and factors out the details
of the set of individual statements that implement the high
level algorithmic step being performed. 1

Our algorithm takes a Java method as input and outputs
the method with natural language phrases associated with
blocks of statements identified as implementing high level
actions. We separately analyze sequences of statements,
conditional statement blocks, and loops within the method.
To delineate a grouping of statements that collectively im-
plements an identifiable high level action, we leverage both
programming language syntax and semantic information as
well as linguistic clues embedded in the developers’ naming
of entities. To synthesize succinct natural language descrip-
tions to express the abstraction, we utilize advanced text

1For each of the listings that we use to illustrate challenges
and aspects of our technique throughout this paper, we pro-
vide the automatically synthesized description.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$10.00

101

generation techniques. Our automatic system involves anal-
ysis of source code only, requiring no execution information,
and thus can be applied to incorrect, incomplete, and un-
executable legacy systems. Since the analysis is local to a
method, this capability can be integrated easily into an IDE
to provide current descriptions as the software developer be-
gins editing a given method.

Our synthesized descriptions have many uses for software
maintenance beyond a tool to help with program under-
standing. We are able to identify potential candidates for
the ExtractMethod refactoring [7] and additionally to sug-
gest a good name for the extracted method using the action,
theme (i.e., direct object) and other arguments (i.e., indirect
objects, prepositional phrases,...) that are identified to syn-
thesize a description. This same information can be used
to identify poor method names and suggest better naming
that includes both action and theme. The phrases could
be used to verify traceability results as well as to generate
internal comments for legacy codes. The high level actions
that are extracted and expressed as phrases can be used to
generate smoother, more succinct method summaries than
previous work [21]. We also believe that code search can
be improved by using the high level action descriptions to
associate higher level actions with the methods containing
them, providing new verbs for the queries to match in the
code. For example, it might be easier to locate code that
performs a Max after identifying and describing a given code
fragment within a method that implements this higher level
action.

The main contributions of this paper are:

• A set of algorithms to identify code fragments (of se-
quences, conditionals, and loops) within a method that
implement high level abstract actions

• Rules to synthesize succinct, accurate natural language
descriptions expressing the high level actions

• Validation of the prevalence and potential reduction in
detail with our system applied to 1.2 million methods
from 1000 Java programs, and developer-judged preci-
sion of the automatically identified high level actions
and associated descriptions. 225 independent judge-
ments among 15 experienced Java developers on 75
identified code fragments strongly confirm that the
code fragments we identify as high level actions are
indeed abstractions and that our synthesized descrip-
tions accurately express these abstractions.

• Illustrations of how the synthesized descriptions can
improve four client tools for software maintenance

2. PROBLEM STATEMENT
In this paper, we are addressing the problem:

Given the signature and body for a method M,
automatically discover each code fragment that
implements a high level abstract action compris-
ing the overall algorithm of M, and accurately
express each high level action as a succinct nat-
ural language description.

Consider the example makeLine in Listing 2. This method
is composed of three high level actions: (1) create a horizon-
tal box, (2) add the given components to the box, and (3)
return the box. One can view any method as representing

a high level action itself, especially from the perspective of
its callers. Since there is nothing to be gained by labeling
individual method calls or statements as a high level ac-
tion, we instead focus on the problem of grouping multiple
statements that collectively implement a high level abstract
action. In the example, we seek to automatically capture
that the three statements 4-6 together implement the sec-
ond algorithmic step of the method.

1 Box makeLine (JComponent f , JComponent s ,
JComponent t){

2 Box onel ineBox = Box . createHor izonta lBox () ;
3 // add components
4 onel ineBox . add (f) ;
5 onel ineBox . add (s) ;
6 onel ineBox . add (t) ;
7
8 return (onel ineBox) ;
9 }

Listing 2: High level action as a sequence : Lines 4
to 6: “add given components to oneline box”

There may be a myriad of types of statement groups that
might represent high level actions. This paper examines
three kinds of statement groups corresponding to major con-
trol structures within a method:

• a sequence of statements that when taken together rep-
resents a single high level action

• a conditional block that performs an action with subtle
variations based on the condition

• code patterns that are commonly implemented using
loop constructs that constitute a high level action

In this paper, we focus on identifying arbitrary statement
sequences in which each statement is performing a similar
action. We do not solve the problem of identifying groupings
of statements where each statement performs a different kind
of sub-action of a given high level action, such as a swap
operation. These sequences require looking for a specific
known syntactic template or domain knowledge. Instead,
we focus on identifying high level actions composed of a
set of similar actions with some differences in the actions’
arguments, such as in Listing 2, without a predefined set of
syntactic templates. We focus on similar kinds of high level
actions in conditionals, except the similar actions now occur
in different branches, creating a different set of challenges for
identification and synthesis. For loops, we examine specific
high level actions based on templates; the major challenge
for handling loops is synthesizing a good description for the
high level action from the loop information. Identification
and text representation synthesis have challenges specific to
each of these types of statement groups. We describe the
specific challenges within each subsection below.

Note that techniques for identifying fragments represent-
ing high level actions (this work) and those statements im-
portant for summaries [21] are mutually exclusive. Addi-
tionally, rules for generating text for a code fragment are
different from those for a single statement [21]. Text gener-
ation for a sequence builds on single statements with exten-
sion for a combined phrase; however, loops and conditionals
go beyond combining phrases for component statements, in-
stead having to address control structures used in different
ways (ex: getMaximum in Listing 1).

102

3. DETECTING AND DESCRIBING HIGH
LEVEL ACTIONS

Our approach to automatically detecting and document-
ing high level actions follows the process illustrated in Fig-
ure 1. The first phase, a preprocessing phase, involves tra-
ditional program analysis to build the program representa-
tions that capture program syntax and semantics and lin-
guistic information used by our analysis. We then traverse
the method’s abstract syntax tree and use both program
structure and linguistic information to identify code frag-
ment candidates for high level action abstraction. For each
candidate high level action fragment, we analyze the code
fragment to identify the action, theme, and secondary ar-
guments to describe the high level action, and then gener-
ate the natural language phrase based on the kind of code
fragment — sequence, conditional or loop. Each remaining
subsection describes the individual phases of our approach.

3.1 Structure and Linguistic Information
Both the analysis to detect code fragments implement-

ing high level actions and analysis to synthesize descriptions
use information in the abstract syntax tree and control flow
graph representations of the method under analysis. Both
analyses also use information from naming conventions and
linguistic knowledge gained from observations of thousands
of Java programs. In particular, we use information from
the control flow graph, and data and control dependences,
along with textual clues which we obtain from the Software
Word Usage Model (SWUM) [10] of the program.

Before any word usage information can be extracted from
names used in the program, identifiers must be split into
component words. We use camel case splitting, which splits
words based on capital letters, underscores, and numbers
(e.g., childXMLElement would be split into “child XML El-
ement”), and aspects of more advanced splitting [6]. As in
any system that uses linguistic information, our technique
will be hindered if the source code does not include at least
some meaningful variable, method, and type names. We be-
lieve this requirement is reasonable, given that developers
tend to choose long and descriptive names for highly visible
program entities such as methods and types [18].

Abbreviations in variable and type names can reduce the
readability of the generated description and accuracy of our
analysis (e.g., Button butSelectAll, MouseEvent evt). We use
techniques from prior work [11] to automatically identify
and expand abbreviations in code.

The Software Word Usage Model (SWUM) [10] provides
us with the necessary linguistic information beyond individ-
ual word frequencies necessary to both identify and express
high level actions. SWUM not only captures the occurrences
of words in code, but also their linguistic and structural re-
lationships. SWUM has been successfully used in concern
location and summary comment generation for Java meth-
ods [21].

Particularly, we use SWUM to obtain the action, theme,
and optional secondary arguments of a statement grouping
to generate succinct and smooth descriptions, and, in con-
junction with program structure, we use this information
to identify code fragments that implement a high level ac-
tion. Consider the example method signature list.add(Item
i), which can be captured by the phrase, “add item to list.”In
this example, the action is“add”, the theme is“item”and the
secondary argument is “(to) list”. Further, in this example,

7 buildGameMenu () ;
8 buildViewMenu () ;
9 buildOrdersMenu () ;
10 buildReportMenu () ;
11 buildColopediaMenu () ;

Listing 3: Different method calls can form a
fragment in a sequence : Lines 7 - 11: “build menus”

15 contentPane . add (endedPanel) ;
16 contentPane . add (bidPanel) ;
17 contentPane . add (endingPanel) ;
18 contentPane . add (buttonOK) ;

Listing 4: Same method calls need not form a
fragment in a sequence : Fragment is lines 15 - 17
only : “add panels to content panel”

the location of the theme is the given parameter while the
location of the secondary argument is the receiver object. In
addition to these locations, a theme or secondary argument
can be the method name itself (e.g., buildMenu()) Lastly, we
leverage our previous work in [21] which develops a strategy
for variable lexicalization, in which descriptive noun phrases
describing variables are generated with modifiers extracted
through type information.

3.2 Sequence as Single Action
Challenges. We focus on identifying sequences of state-
ments with similar actions, indicated by similar method
calls. The basic identification challenge is to determine whether
a given statement is similar to its successor statement and
thus can be integrated with it to build a fragment. To inte-
grate two statements, we need to define a notion of similarity
between the statements’ actions.

From Listing 2, one might think that statements with the
same method being called can be integrated to form a frag-
ment. However, as shown in Listing 3, the individual method
names are different, yet there is a high level action imple-
mented by lines 7-11, synthesized as build menus or build
different menus.

Conversely, a sequence of the same method being called
may not be integrable. In Listing 4, we claim that lines 15 to
17 have a high level action of “add panels to content panel”.
It is not clear if line 18 should be included in this fragment,
as the type of the actual parameter to add in line 18 is JBut-
ton, while the type of the actual parameter to the add calls
on lines 15 to 17 is a JPanel. A description of lines 15 to
18 is likely to mention two different kinds of addition and
hence our belief that lines 15 to 18 represent two individual
steps. While one could use the formal parameter of add to
include 18 with 15 to 17, the resulting abstraction of “add
components to content panel” is too vague.

As shown above, common actions alone do not suffice in
integrating two statements. Thus, we take into account the
fact that there could be differences among the method calls
in the name, parameter or receiver object. Even among the
differences, we strive to find some commonality to integrate
statements into a fragment.

The next challenge is to synthesize a phrase that repre-
sents an abstraction of the fragment. To generate such a
phrase, we need to identify the common and different parts

103

Figure 1: High level view of process: Detect high level action code fragments and synthesize descriptions

among the integrable statements and find a way to express
the differences in a concise manner without being overly
generic.

Identifying fragments. We focus on integrating state-
ments with one or more method calls, as this is the general
case. For a given method, we build a fragment in an in-
cremental manner. We determine if pairs of statements are
integrable, starting with the first statement in the method.
We build a fragment of such integrable statements with max-
imum possible length. A given method can have several such
fragments.

Figure 2 shows the heuristic for “integrable” used to inte-
grate any two statements in a sequence. We illustrate the
execution of the algorithm in Figure 2 with the example in
Listing 4. The first task is to generate succinct verb phrases
for the given two statements using templates defined in [21].
A verb phrase begins with a verb followed by a noun phrase
(NP) and optional prepositional phrases (PP). A preposi-
tional phrase begins with a preposition followed by an NP.
In an English NP, the last word is typically the head word
and is important because it bears the type of the object it
refers to, whereas preceding words modify or describe the
head word.

Consider Line 15 and Line 16 in Listing 4. Our system
generates the verb phrases add ended panel to content panel
and add bid panel to content panel for lines 15 and 16, re-
spectively. The verbs in the verb phrases are the same. The
PPs are the same – to content panel. The NPs have the
same head word, panel. Thus, we decide that lines 15 and
16 can be integrated. Similarly, lines 16 and 17 can be in-
tegrated. However, for line 18, the generated phrase is add
okButton to content panel. Now the head words of the NP
in the phrases for lines 17 and 18 are not the same. Thus,
we do not integrate lines 17 and 18, and the fragment only
consists of lines 16, 17 and 18.

Synthesizing the description. In an identified fragment,
we synthesize the description by beginning with the common
verb. To generate a single phrase for NP1 and NP2 (Fig-
ure 2), we use the plural form of the common head word of
NP1 and NP2, if the NPs differ, or use the common Noun
Phrase. For the PP, we use the common preposition and
use our previous work on lexicalization of variables [21] to
synthesize the NP part of the PP. Finally, if the NPs do not
share the head word but correspond to fields of the same
class, we synthesize “all attributes” or “different attributes”
based on whether all or some fields of the class appear in
the different statements of the fragment.

Figure 2: Integrating statements in a sequence

3.3 Abstracting Conditionals
Challenges. In the case of a sequence, we only focused on a
series of statements with method calls. However, for condi-
tionals, we need to integrate additional kinds of statements.
Additionally, there can be multiple statements along differ-
ent branches, which are not integrable as a sequence but
some or all of the statements can be integrated with a cor-
responding statement in the other branch(es). In addition
to unifying the statements along the different branches, we
need to handle the integration of the conditional expressions
guarding the different branches, as shown in Listing 5.

Synthesizing the description poses new challenges due to
the new types of statements that can be unified, the han-
dling of multiple statements as described above and the need
to describe succinctly the guarding conditional expressions.
For example, there may be opportunities to integrate return
statements that occur along different paths of a conditional.
When integrating return statements, all the return expres-
sions may be literals or similar method calls, in which case,
we need strategies to synthesize a more precise phrase, as
shown in Listing 6.

Identifying and describing conditionals. Here, we de-
scribe our approach for integrating statements in the then
and else branches of an if else statement. We handle if . . . else
if . . . else . . . by integrating the statements of the second if-
else and then recursively integrating with the parent if. This
strategy also generalizes to switch statements.

We compare each statement in the then block with each
statement in the else branch to build a fragment. When the
statements involve only method calls, the fragment identi-

104

37 i f (nothingJrb . i s S e l e c t e d ()){
38 ConfigurationManager . s e tProperty (. . .) ;
39 } else i f (l a s t J r b . i s S e l e c t e d ()){
41 ConfigurationManager . s e tProperty (. . .) ;
42 } else i f (LastKeepPosJrb . i s S e l e c t e d ()){
44 ConfigurationManager . s e tProperty (. . .) ;
45 }

Listing 5: Higher level action in a conditional : Lines
37 to 45 : “set property based on which radio button
is selected”

6 switch (movementType) {
7 case IEntityMovementType .MOVE NONE: return ”N” ;
8 case IEntityMovementType .MOVEWALK: return ”W” ;
9 case IEntityMovementType .MOVE RUN: return ”R” ;
10 }

Listing 6: Theme Inference for return: Lines 6 to 10:
“Return movement abbreviation based on movement
type”

fication and abstraction follows the same algorithm as for
statement sequences. The crucial difference is in synthe-
sizing a description, where instead of the plural used in the
sequence case, we use the corresponding singular form. List-
ing 5, lines 38, 41, 44 demonstrate this basic case.

Additionally, we can also detect potential opportunities
to integrate return statements and assignments to the same
variable along the different branches. These two types do
not manifest in the sequence abstraction case where the in-
tegrable actions will occur along the same path; a program-
mer would not correctly have two exact same assignments
to the same variable along the same path.

Here, we describe the integration of the different state-
ment types we could encounter in identifying and describing
high level actions in different conditional branches. For re-
turn statements, we integrate based on the actual return ex-
pressions. If each return expression is a literal (e.g., return
1;), we infer a name for the theme as shown in Listing 6,
based on the theme of the enclosing method. Our strat-
egy enables the synthesis of movement abbreviation in place
of the generic string in the abstraction. For variables, we
first generate an appropriate noun phrase for each variable
v, via the process called lexicalize(v) defined in [21]. We
then check if the lexicalized variables can be integrated. For
method calls, we check if the generated phrases for the calls
can be integrated and if so, use the synthesized phrase for
the abstraction.

For assignments to the same variable, v, if the assignment
is not due to a method call, we abstract the fragment as,
update lexicalize(v). When the assignment is due to a create
or get method, we abstract the assignment statements in the
different branches as “create or get lexicalize(v)” as shown in
Listing 7.

Describing conditional expressions. In addition to in-
tegrating the statements in the different branches, we also
need to integrate and synthesize a phrase for the guarding
conditional expressions. Our strategy is similar to the strat-
egy we follow for statements except for the fact that we now
need to consider clauses of the form subject predicate object
generated for the conditional expressions (instead of verb

3 i f (type == PT HTTP){
4 t e s t e r = new NetworkAdminHTTPTester (core , l) ;
5 } else i f (type == PT TCP){
6 t e s t e r = new NetworkAdminTCPTester (core , l) ;
7 } else {
8 t e s t e r = new NetworkAdminUDPTester (core , l) ;
9 }

Listing 7: Similar assignment : Lines 3-9 : “create
network administration protocol tester based on type”

phrases). The clauses are generated using [21]. We compare
the generated clause for each conditional expression to see
if the expressions are integrable.

If the subject and predicate of each clause is the same, then
we integrate the expressions and synthesize an abstraction
as:

based on what subject predicate
An example is shown in Figure 4(a) in Section 5, lines 5,
7 and 10. The synthesized abstraction is based on what os
name starts with.

Notice the use of what in the abstraction. The indi-
vidual clauses for each expression are propositions of the
form “osName starts with . . . ”. We use what to transform
these propositions into corresponding questions, what does
osName start with? The heuristic uses what because the
predicate startsWith begins with a verb in the third person
singular.

If only the head word of the subject in each clause is the
same, then we integrate the conditional expressions and syn-
thesize the abstraction as:

based on which head word predicate object
For example, in Listing 5, the abstraction for 37, 39, 42

is based on which RadioButton is selected. Again notice
the use of which in the abstraction, to help transform the
proposition into a corresponding question. Also, observe
the use of RadioButton in the synthesized phrase obtained
from the type name of the receiver object in the expression
method calls. Finally, the heuristic uses which because the
predicate isSelected begins with the auxiliary verb, is.

In the default case, we integrate the expressions and syn-
thesize an abstraction, based on different conditions.

3.4 Finding Traceable Patterns in Loops
Challenges. Our first challenge is to identify loops that
perform common algorithmic steps like finding, counting,
copying (e.g., Listing 1). This involves developing identi-
fication templates for each common algorithmic step in a
loop, which are general enough to capture a range of code
fragments that carry out these algorithmic steps. The sec-
ond challenge is to develop heuristics to synthesize a smooth
and succinct phrase for each identified type.

Strategy: Loop fragment identification and abstrac-
tion. We examined many loops across diverse open-source
programs and developed heuristics to identify common high
level actions performed by loops. As a proof of concept,
we have developed and implemented rules for five different
common high level actions implemented by loops. These
patterns are:

max-min: Get an item in a collection with a maximum
(minimum) value computed using some specified cri-
teria (e.g., Listing 1)

105

count: Count items in a collection that meet a specified
criteria

contains: Check if a collection contains an item that has
some specified property

find: Find an item in a collection that meets some specified
criteria

copy: Copy one or more items in a collection that have a
desired attribute(s) to another collection

Some other algorithmic loop patterns follow immediately
from the above. For example, sum can be seen an exten-
sion of count. We can extend our work by looking for other
algorithmic patterns in sources like the C++ Standard Tem-
plate Library and the Java library. We can also add to the
catalog of common patterns by looking at introductory data
structure or programming courses.

Identifying fragments with any of the five patterns.
We have developed templates representing the general code
structure of the five patterns described above. For example,
Figure 3 is the general form of Listing 1. For a given loop
within a method, we check if the loop can map to any of the
algorithm templates.

Figure 3: Template for the Get Maximum Algo-
rithm Pattern

Synthesizing description for an identified pattern.
For each of the five patterns, we developed synthesis tem-
plates to express the abstraction in a succinct manner. These
synthesis templates rely upon the corresponding algorithmic
template for the pattern. For example, the synthesis tem-
plate for the max-min pattern is shown in Figure 3.

Once a loop maps to a particular algorithmic template, we
generate succinct phrases for each statement in the actual
loop using rules from [21]. We then look at the correspond-
ing synthesis template for the pattern and extract elements
of the synthesis template from the mapping of the actual
loop values to the algorithm template. We have defined ex-
traction rules for each algorithm pattern.

Extraction rules. For the max-min pattern, the extraction
rules are: extract <item> and <collection> from the actual
loop, using rules defined in [21]. Rules in [21] handle differ-
ent ways of looping over each item in a collection, such as,
using an iterator or an index from 0 to N-1, where N is the
size of the collection. To extract <adjective>, scan the indi-
vidual words in the words of the variable in the actual loop
that corresponds to maxItem in the algorithm template. To
extract <criteria>, scan the verb phrase generated for the

2 for (DrawingView v : views) {
3 i f (v . getComponent () == c)
4 return v ;
5 }

Listing 8: Use of relative clause: Lines 2 to 5: “Find
(return) drawing view whose component equals given
container”

statement that assigns to the variable in the actual loop cor-
responding to current in the algorithm template. The noun
phrase in this generated phrase supplies the <criteria>.

Putting it all together. Consider Figure 3 and Listing 1.
Our first step of mapping the actual loop to an algorithm
template succeeds for the loop in Listing 1, which maps to
the algorithm template for get maximum. To synthesize an
abstraction for the loop, we extract the following based on
the extraction rules:

• <item> is weaponAttackAction object

• <collection> is vectorAttacks,

• <adjective> is highest (from the variable on Line 14
in Listing 1),

• current is fDanger,

• phrase generated for the assignment to fDanger is get
expected damage

• <criteria> is expected damage (i.e., Noun phrase in
the phrase generated for the assignment to fDanger).

Combining these extracted entities yields the phrase shown
in Listing 1.

Slight variations in the synthesis template. We have
a slightly different synthesis template in cases where we can
use a relative clause to synthesize a more succinct phrase.
Consider the snippet shown in Listing 8. The loop maps
to the algorithm template for find. The synthesis template
for find is: find item (in collection) whose/which/such that
<criteria>.
The relative pronoun whose/which is decided as follows:
Given an item and a clause for the criteria of the form sub-
ject predicate object, if item is the subject, then the relative
pronoun is which. If an attribute of item is the subject, then
the relative pronoun is whose. The default uses such that.

For Listing 8, item is drawing view and the clause gener-
ated for the criteria (line 3) is component of drawing view
equals given container. Thus, in this clause, an attribute
of item (i.e., component) is the subject, hence the relative
pronoun is whose, as shown in Listing 8.

4. EVALUATION
We have implemented the algorithm described in Sec-

tion 3.4 in a prototype tool for identifying and describing
high level actions in Java methods. In this section, we eval-
uate the output of our tool and examine how often our tool
actually identifies high level actions when executed on 1.2
million methods across 1000 Java programs.

Specifically, we designed studies to answer the questions:

Prevalence: How prevalent are the high level actions imple-
mented as sequence, conditional, and loops identified
by our algorithm in Java software?

106

Detail Reduction: What is the reduction in the number of
statements that need to be read by abstracting code
fragments into succinct descriptions with our technique?

Precision: How precisely do we identify code fragments that
implement a high level action, and how well does the
synthesized description represent the high level action?

4.1 Prevalence of Identified High Level Actions
We selected a random sample of 1000 open-source Java

programs from Sourceforge. Cumulatively, these programs
contain over 1.2 million methods, with a median of 314 and
maximum of 144,604 methods per project. We executed
our prototype tool on the 1.2 million methods and gathered
statistics on the frequency that the sequence, conditional,
and loop high level actions were automatically detected.

Sequence. Since high level actions implemented as a simple
sequence occur infrequently in small methods, we examined
the frequency of detecting these sequences in methods with
at least 10 statements. 155,289 (12.5%) of the 1.2 mil-
lion methods contain at least 10 statements. Among these
155,289 methods, our prototype detected 17,205 (11%) meth-
ods with at least one high level action implemented as a
simple sequence.

Conditional. The corpus contains 144,562 if-else state-
ments and 17,940 switch statements. Our prototype auto-
matically discovered 58,439 (40%) of these if-else blocks and
4,319 (24%) of the switch blocks as high level actions.

Loop. There are 162,535 loops in the corpus, of which we
automatically classify 82,402 (51%) as iterating over all
items in a collection. 12,524 (15%) of these iterator loops
were detected as implementing an algorithmic pattern.

For this large corpus of Java methods, the frequency of
the identified code fragments ranges from 11% for sequences
within methods larger than 10 statements to 40% of if-else
blocks. We believe these numbers are high enough to demon-
strate that our automatic identification algorithm for high
level actions has wide applicability.

4.2 Potential Reduction in Reading Detail
One measure of the effectiveness of our technique is to

quantify how much code a human can potentially avoid
reading by instead reading our synthesized high level de-
scriptions. We focus here on how much detail is reduced
or collapsed into our descriptions for each kind of state-
ment grouping — sequence, conditional, and loop. Thus,
each time we synthesize a description, we count the num-
ber of statements that were captured by our description and
the number of phrases in the resulting description. While
each sequence is reduced to a single phrase, conditionals are
typically described by one phrase for the body (then and
else parts combined) and one phrase for the set of guarding
conditions. The number of phrases for the patterns imple-
mented by loops varies with the pattern.

Across the 1.2 million methods of the 1000 programs, we
computed the following Detail Reduction information about
the reduction in reading detail achieved by our prototype:

sequence. Of the sequences implementing a high level ac-
tion, there were 159,114 statements originally, which were
synthesized to 35,130 phrases (22% of the original size).

conditional. The conditionals identified as a high level

action contained 246,703 statements. These were reduced
to 70,730 phrases (29% of original size).

loop. Loops with patterns originally contained 49,387 state-
ments which were synthesized to 12,524 phrases (25% of
original size.

These results demonstrate that a significant reduction in
detail can be obtained with our technique.

4.3 Precision of Identification and Description
Procedure. We asked 15 human evaluators to judge the
precision of our prototype on identifying and describing high
level actions targeted by our technique. The programming
experience of this group ranges from 2 to 20 years, with a
median of 8 years. Eleven of the evaluators consider them-
selves as expert or advanced programmers. Seven evaluators
have software industry experience ranging from 2 to 7 years.

Project #m kloc Project #m kloc
Freecol 5971 110 Freemind 6110 94
GanttProject 4956 60 Hibernate 12793 148
HsqlDB 5150 136 Jabref 5368 100
Jajuk 2139 44 JavaHMO 1737 32
JBidwatcher 1877 30 JFtp 2379 45
JHotDraw 4267 63 MegaMek 9256 200
PlanetaMessenger 1142 22 Vuze 36372 700
SweetHome3D 4083 73

Table 1: Subject programs in precision study. #m:
methods; kloc: 1000 lines of code.

From the 1000 open-source Java programs, we selected
methods from 15 projects of different domains and executed
our prototype on these methods (see selection method be-
low). Table 1 shows the characteristics of these 15 projects.

We gave each evaluator 15 code fragments identified as a
high level action by our prototype. These code fragments
were drawn randomly across the methods analyzed by our
tool. Each human evaluated 5 sequences, 5 conditionals,
and 5 loops. To account for variation in human opinion,
we gathered three separate judgements for each code frag-
ment. Thus, we obtained 225 independent judgements on 75
identified code fragments, by 15 developers evaluating inde-
pendently in groups of 3. To control for learning effects, the
evaluators in a group did not examine the code fragments
in the same order.

Although we are identifying and abstracting code frag-
ments, an evaluator might need to read the entire method
to judge the tool’s identification and abstraction. Thus, to
avoid burdening the evaluators, we selected code fragments
from methods with at most 20 statements. Thus, we ex-
ecuted our tool on each method with up to 20 statements
across the 15 programs, and collected the methods in which
our tool identified a high level action. We then randomly
chose 25 fragments each of sequence, conditional, and loop
from this collection of methods. For loops, we randomly
chose 5 fragments from each of the 5 patterns. Each group
of evaluators had one fragment of each loop pattern.

We showed evaluators each code fragment assigned to
them and asked them first to write an abstraction (i.e., En-
glish description) of the code fragment. To avoid bias, we
deliberately did not provide an explicit definition or exam-
ples of an abstraction. They were allowed to use any resource
to help write a description, such as the method containing
the fragment, any existing comments, or the signatures of

107

called methods. We then asked for their opinion on the fol-
lowing two propositions:

P1: The fragment of statements from lines = X to Y re-
flects a high level action that could be expressed as a
succinct phrase by a human. i.e.,

• There are no other statement(s) in the method
that you would include in the fragment, AND

• there are no statement(s) in the fragment that you
would exclude from the fragment.

P2: The description represents an abstraction of the block.

To reduce bias, we showed our synthesized description to
the evaluators after they answered P1 and before they re-
sponded to P2. The evaluators were asked to respond to
the above two propositions via the widely used five-point
Likert scale, (1) Strongly Disagree, (2) Disagree, (3) Unsure
(Neither agree nor disagree), (4) Agree, (5) Strongly Agree.

Results and Discussion. Table 2 shows the number of
individual developer responses along the Likert scale. The
results quite strongly suggest that the code fragments that
we automatically identify as a high level action are indeed
viewed as high level actions by humans. Similarly, the re-
sults indicate that we are able to synthesize descriptions
that accurately represent the high level action. In 192 of
225 responses, humans strongly agreed that the identified
code fragment represented an abstractable high level action.
Only in 12 cases did humans not agree with our proposi-
tion. Similarly, 165 of 225 human responses strongly agreed
that the synthesized description represented an abstraction
of the fragment. In only 23 of 225 responses, developers
did not agree or strongly agree with this proposition. When
considering the majority of the three opinions for a given
code fragment, for all 75 fragments examined, the major-
ity agreed or strongly agreed that the fragment reflected a
high level action (P1). For 73 of 75 fragments, the major-
ity agreed or strongly agreed with P2, that the synthesized
description represented the high level action.

Identification Description
Response Sq Co Lp All Sq Co Lp All
1:S Disagree 0 1 1 2 1 0 2 3
2:Disagree 3 2 0 5 4 3 3 10
3:Neutral 0 2 3 5 1 6 3 10
4:Agree 8 5 8 21 13 13 11 37
5:S Agree 64 65 63 192 56 53 56 165

Total 75 75 75 225 75 75 75 225

Table 2: Precision results: Distribution of human
judgements of high level action identification and de-
scription. Sq: sequence; Co: conditional; Lp: loop.

While the results are very encouraging, we analyzed the
few fragments for which a majority of the evaluators did not
agree or strongly agree with the proposition P2. In one loop,
we identified the count pattern, but there is an additional
object creation action which we did not include in the de-
scription. In a conditional fragment, the then has multiple
statements each of which has a corresponding similar state-
ment in the else branch. This is challenging to our current
tool when attempting to produce a succinct description, and
two evaluators thus responded with the unsure response.

We also examined the fragments where any one evaluator
did not agree or strongly agree with the propositions. For

identification, P1, there were 12 such cases. The interesting
cases were those fragments where the evaluator wanted us to
include the declaration of the variable used in a conditional
or loop expression in our description.

For description, P2, 23 responses had an evaluator who
did not agree or strongly agree with the proposition. 18
responses were when an evaluator did not agree or strongly
agree with our proposition. Among these, the unsure or
disagree was mainly due to the evaluator wanting additional
information in the description. Usually this information was
found in the parameter of a method call in the statement.

4.4 Summary of Results
Our study of the prevalence of detected high level actions

in over 2.1 million methods indicates that our algorithm
for automatically identifying code fragments that implement
high level actions has wide applicability. Measuring the size
of the statement groupings when we synthesize descriptions
suggests a significant reduction in the details is obtained.
Finally, human judgements by 15 developers strongly sug-
gest indeed they view the code fragments that we identify
as high level actions and our synthesized descriptions accu-
rately express the abstraction.

4.5 Threats to Validity
Our results may not generalize to other Java programs or

languages. To mitigate this, we downloaded 9000 most pop-
ular projects from Sourceforge, and the 1000 programs were
drawn from this set. We chose our samples for study from
across 15 diverse projects. In the precision study, the code
fragments were drawn from methods with 20 or fewer state-
ments for human judgement, thus our results might vary on
larger programs. All our evaluators were non-novices, so our
results might not hold with novices. Our reduction in read-
ing detail provides one way to measure the amount of code
that a developer may be able to avoid reading, given a high
level description. It is still possible a developer would want
to read at that level of detail.

5. IMPROVING CLIENT TOOLS
Another measure of this work’s contribution is the im-

pact on client tools for software maintenance. While we
briefly mention other uses in the introduction, this section
details some examples of how our technique can contribute
to refactoring, automatic internal documentation, method
renaming, and improving on our previous work in generat-
ing summary comments for methods.

Extract Method Refactoring. Fowler [7], states: “You
have a code fragment that can be grouped together, turn the
fragment into a method whose name explains the purpose of
the method”. The key steps are:

1. Identify code fragment to extract into a separate method

2. Identify input parameters and return type for extracted
method, create a new method and replace fragment in
the original method by a call to the extracted method

3. Provide a descriptive name for the extracted method

While IDEs like Eclipse support the middle step (i.e., the
actual extraction process), there are no proven automated
techniques to achieve the other two tasks. We believe that
the fragments identified by our technique will broadly corre-
spond to some of the fragments described by Fowler. More-

108

(a) Original Method

(b) After Extract Method Refactoring

Figure 4: Using our system for refactoring

over, the abstraction phrase generated by our tool for the
fragment can be used to name the extracted method.

Figure 4 shows a method main from the open-source project
JHotDraw. Our technique identifies two abstractable frag-
ments in this method. The first fragment is the conditional
from line 5 to 12, while the second fragment is the statement
sequence from line 15 to 19. A developer could use this out-
put to select the two fragments to extract into methods. Our
system generates the description “create application based
on what os starts with” for the first fragment, and produces
the abstraction “set different attributes of SVGApplication-
Model” for the second fragment. The extracted method can
be named using the action and the theme in the generated
abstraction for the fragment from which the method was ex-
tracted. Thus, lines 5 to 12 can be replaced by a method
call createApplication, while lines 15 to 19 can be replaced
by a method call setDifferentAttributes. The method main
after refactoring is also shown in Figure 4.

Internal Comment Generation. Studies have shown the
utility of comments (including internal comments) for un-
derstanding software [22,23]. However, few software projects
adequately document the code to reduce future maintenance
costs [15]. Fowler recommends ExtractMethod refactoring
over the usage of comments within a method body. How-
ever, if a developer does not want too many small methods as
a result of the ExtractMethod refactoring, he can use our tool
to automatically identify fragments and use the generated
abstraction as a comment within the body of the method
for the fragment. This is particularly useful for inserting in-
ternal comments into infrequently commented legacy code.
Our tool could also be used to add empty lines between frag-
ments to delineate the fragments and enhance readability, by
achieving a text document paragraph-like structure.

Suggesting more informative method names. The
benefits of having informative method names is well-known.
Unfortunately, it is also well-known that many methods are
not suitably named. We believe that our technique could be

used to identify methods whose name could be made more
informative. More importantly, our technique can be used
to provide a better name for some methods. Our work could
be used to make the theme of a method more descriptive.
Instead of changing the method name, a developer could
simply use the suggested name by our system as a com-
ment at the call sites. From the project, xml-cml, consider
the method with the signature, getAtom(List<CMLAtom>
newAtomVector). Our system identifies the high-level action
get maximum in this method. Thus, the system synthesizes,
get atom with heaviest atomic number for the high-level ac-
tion. From this description, one can automatically derive a
better name, getHeaviestAtom for the original method.

Improving automatically generated summary com-
ments for a method. Previously, we presented a novel
technique to automatically generate comments that summa-
rize the major actions of a Java method [21]. Our current
work can be used to significantly improve the summariza-
tion. Consider Listing 2. Using the high-level action identi-
fication in this paper, we can produce the summary “create
oneline box. add the given components to it and return it”.

Recognizing the high-level actions in a loop can also help
generate succinct summaries. In the method getConnection-
Size from project Vuze(Azureus), by recognizing the count
pattern and using our synthesis process, a summary com-
ment generator can produce the summary “count transfers
that have started and return count”. We believe that this
summary is a very good adjunct to the method name.

6. RELATED WORK
To our knowledge, this is the first automatic technique

to identify source code fragments that implement a high
level action and synthesize a natural language description
to express that abstraction. However, there is work on au-
tomatically extracting topic words and phrases from source
code [19,20] and clustering program elements that share sim-
ilar phrases [17]. Host et al. [13] automatically extracted
a verb lexicon from source code to help new programmers
understand typical verb usage in practice. Hill et al. [12] de-
veloped an algorithm to automatically extract and generate
verb, noun, and prepositional phrases from method and field
signatures. The phrases are used to capture word context of
natural language queries for software search. In this paper,
we go beyond this by generating phrases for various length
code fragments involving different types of statements. Ad-
ditionally, these techniques do not identify code fragments
that collectively implement a particular high level action
within a given method.

Existing research into design recovery and reuse has also
used information from identifiers [1, 5, 9]. However, all of
these approaches require an expert-defined domain model
or knowledge base, which is not available for all software
systems or domains.

Our work might sound similar to finding “beacons” [2, 4].
A beacon can be a well known coding pattern (e.g., 3 lines for
swapping array elements), meaningful identifiers, program
structure, or comment statements, that signal something to
the code reader wants to know about the code segment’s
functionality. Beacons only represent a name given to a
visually recognizable entity or pattern. Our work automat-
ically finds some of these fragments in code and generates
an abstraction for the fragment. Gil and Maman [8] define

109

the notion of traceable patterns, which are similar to design
patterns, except that they are mechanically recognizable
and represent lower level abstraction, (e.g., data manager
or pool). Particularly, they present a catalog of 27 micro
patterns, that is, class-level traceable patterns, for Java, in-
tended for design assessment. In contrast, our work focuses
on identifying high level actions within methods, providing
support for different client tools.

Method extraction is primarily based on slicing; block-
based slicing [24] or program transformations with slicing [16]
to make the dependence-related statements contiguous for
extract method refactoring. Our approach would poten-
tially identify candidate fragments not identified through de-
pendencies, does not require code transformations to make
contiguous, and can identify good names for the extracted
method using the phrases we generate.

Host and Ostvold [14] developed name-specific implemen-
tation rules mined from a large corpus of Java programs, ap-
plied the rules to identify method names that do not match
their implementation, and then suggest better method names.
To the best of our understanding, their work is restricted to
checking if the action (verb) in the method name is appro-
priate. Our work can help in identifying if the the theme
of the action is appropriate and can make suggestions to
improve the theme part of the method name.

Lastly, this work enables automatically generated com-
ments well beyond our previous work in summary comment
generation [21] in several important ways. Our previous
comment generation focused on identifying important con-
tent for the method summary and then generating text for
each selected statement in isolation. This paper addresses
the problem of identifying which blocks of statements form
a single high level step, which is a different problem from
identifying the important content for a summary. Addition-
ally, our text generation in this work takes into account the
set of statements to generate a single cohesive phrase for
that step. Each statement in the identified code fragment
is not analyzed in isolation but instead the set is analyzed
as a group for text generation. Thus, we can now gener-
ate internal comments for statement blocks as well as use
the phrases generated for high level steps to improve the
abstraction level of summary comments. Other documen-
tation generation work has focused on specific aspects of
source code [3].

7. CONCLUSIONS AND FUTURE WORK
To our knowledge, we have presented the first technique

for identifying code fragments of statement sequences, con-
ditionals and loops that can be abstracted as a high level
action, with the capability of also automatically synthesiz-
ing a natural language description of the abstraction. Based
on 15 experienced Java programmers’ opinions, we are quite
encouraged by both our success in accurately identifying a
widely applicable set of code fragments, and in synthesiz-
ing descriptions that humans believe accurately express the
high level action.

In the future, we will continue to augment our system by
examining additional potential code patterns in loops and
non-loop constructs with different characteristics observed
in our corpus, with attention to both identification and syn-
thesis of succinct, informative descriptions. We plan to inte-
grate our work in this paper into our summary comment gen-
erator to investigate the improvements made possible. We

will also integrate the techniques into Eclipse and investi-
gate usefulness for refactoring with human study. There are
several other client tools that we believe we can build upon
the descriptions that we synthesize for code fragments.

8. REFERENCES
[1] T. J. Biggerstaff, B. G. Mitbander, and D. Webster. The

concept assignment problem in program understanding. ICSE
’93: Intl. Conf. on Softw. Engg., 1993.

[2] R. Brooks. Towards a theory of the comprehension of computer
programs. Intl. Journal. Man-Machine Studies, 18, 1983.

[3] R. P. Buse and W. R. Weimer. Automatic documentation
inference for exceptions. ISSTA ’08: Intl. Symposium on
Softw. Testing and Analysis, 2008.

[4] M. E. Crosby, J. Scholtz, and S. Wiedenbeck. The Roles
Beacons Play in Comprehension for Novice and Expert
Programmers. Workshop of the Psychology of Programming
Interest Group (PPIG), 2002.

[5] P. T. Devanbu, R. J. Brachman, P. G. Selfridge, and B. W.
Ballard. Lassie—a knowledge-based Softw. information system.
ICSE ’90: Intl. Conf. on Softw. Engg., 1990.

[6] E. Enslen, E. Hill, L. Pollock, and K. Vijay-Shanker. Mining
Source Code to Automatically Split Identifiers for Software
Analysis. Intl. Working Conf on Mining Softw. Repositories
(MSR), 2009.

[7] M. Fowler. Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 1999.

[8] J. Y. Gil and I. Maman. Micro patterns in Java code. OOPSLA
’05: Conf. on Object-Oriented Prog., Systems, Languages,
and Applications, 2005.

[9] S. Henninger. Using Iterative Refinement to Find Reusable
Software. IEEE Softw., 11(5):48–59, 1994.

[10] E. Hill. Integrating Natural Language and Program Structure
Information to Improve Software Search and Exploration.
PhD Dissertation, University of Delaware, 2010.

[11] E. Hill, Z. P. Fry, H. Boyd, G. Sridhara, Y. Novikova,
L. Pollock, and K. Vijay-Shanker. AMAP: Automatically
Mining Abbreviation Expansions in Programs to Enhance
Software Maintenance Tools. Intl. Working Conf on Mining
Softw. Repositories, 2008.

[12] E. Hill, L. Pollock, and K. Vijay-Shanker. Automatically
Capturing Source Code Context of NL-Queries for Software
Maintenance and Reuse. Intl. Conf on Softw. Engg. (ICSE),
2009.

[13] E. W. Høst and B. M. Østvold. The programmer’s lexicon,
Volume I: The verbs. SCAM ’07: Intl. Working Conf. on
Source Code Analysis and Manipulation, 2007.

[14] E. W. Høst and B. M. Østvold. Debugging method names.
ECOOP: European Conf. on Object-Oriented Prog., 2009.

[15] M. Kajko-Mattsson. A Survey of Documentation Practice
within Corrective Maintenance. Empirical Softw. Engg.,
10(1):31–55, 2005.

[16] R. Komondoor and S. Horwitz. Effective, automatic procedure
extraction. Intl. Workshop on Program Comprehension, 2003.

[17] A. Kuhn, S. Ducasse, and T. Gı́rba. Semantic clustering:
Identifying topics in source code. Inf. Softw. Technol., 49(3),
2007.

[18] B. Liblit, A. Begel, and E. Sweetser. Cognitive Perspectives on
the Role of Naming in Computer Programs. Psychology of
Programming Workshop (PPIG), 2006.

[19] G. Maskeri, S. Sarkar, and K. Heafield. Mining business topics
in source code using latent dirichlet allocation. ISEC ’08:
India Softw. Engg. Conf., 2008.

[20] M. Ohba and K. Gondow. Toward mining “concept keywords”
from identifiers in large software projects. MSR ’05: Intl.
Workshop on Mining Softw. Repositories, 2005.

[21] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and
K. Vijay-Shanker. Towards Automatically Generating Summary
Comments for Java Methods. Intl. Conf on Automated Softw.
Engg. (ASE’10), 2010.

[22] A. A. Takang, P. A. Grubb, and R. D. Macredie. The Effects of
Comments and Identifier Names on Program Comprehensibility:
An Experimental Investigation. J. Prog. Lang., 4(3), 1996.

[23] T. Tenny. Program Readability: Procedures Versus Comments.
IEEE Trans. Softw. Eng., 14(9), 1988.

[24] N. Tsantalis and A. Chatzigeorgiou. Identification of Extract
Method Refactoring Opportunities. European Conf. on Softw.
Maintenance and Reengineering (CSMR), 2009.

110

