
Evaluating Forum Discussions to Inform the Design
of an API Critic

Chandan R. Rupakheti, Daqing Hou
Department of Electrical and Computer Engineering

Clarkson University, Potsdam, New York 13699
{rupakhcr, dhou}@clarkson.edu

Abstract—Learning to use a software framework and its API
(Application Programming Interfaces) can be a major endeavor
for novices. To help, we have built a critic to advise the use of an
API based on the formal semantics of the API. Specifically, the
critic offers advice when the symbolic state of the API client code
triggers any API usage rules. To assess to what extent our critic
can help solve practical API usage problems and what kinds of
API usage rules can be formulated, we manually analyzed 150
discussion threads from the Java Swing forum. We categorize
the discussion threads according to how they can be helped by
the critic. We find that API problems of the same nature appear
repeatedly in the forum, and that API problems of the same
nature can be addressed by implementing a new API usage rule
for the critic. We characterize the set of discovered API usage
rules as a whole. Unlike past empirical studies that focus on
answering why frameworks and APIs are hard to learn, ours
is the first designed to produce systematic data that have been
directly used to build an API support tool.

Index Terms—Software Frameworks, APIs, Critic, Symbolic
Execution, Online Forum Discussions, AWT/Swing, Java.

I. INTRODUCTION

Efficient development of high-quality software is critical for
business competitiveness. To this end, software reuse using
frameworks and libraries has proven effective. Frameworks
and libraries offer canned solutions for a set of common
problems in some specific domain, for example, the signal
processing libraries of Matlab or a GUI framework. They
provide leverage in large part because they are used by many
applications through a published API (Application Program-
ming Interfaces). Unfortunately, frameworks, libraries, and
APIs are hard to learn and use [7], [12], [16].

The challenge of learning and using APIs can be explained
by the difference between an experienced and a novice user of
a programming tool. Experienced programmers are able to use
the context of the problem they are tasked to solve to narrow
down the set of possible solutions they need to explore. Like
experienced chess players, experienced programmers seem to
rule out all but a handful of promising lines of development
within the context of the tools at their disposal. Novices, in
contrast, tend to lack the big picture that would otherwise help
organize their attack and, thus, become overloaded.

Due to time pressure and an urge to solve problems quickly,
many programmers learn APIs on demand and learn them
by doing. That is, they try to learn just enough of an API
so that they can solve the current task. Search tools can

support this practice by helping locate relevant code examples.
But programmers, especially novices, cannot always formu-
late good queries for what they are looking for [4], [11].
Furthermore, even if they find relevant code examples, they
still face a significant challenge to understand and evaluate
them for relevance [11]. Programmers can also seek help from
online forums, but sometimes there can be significant response
delay [13]. It would be ideal to engage a human expert for
help, but experts are scarce. When popular third-party APIs are
used, it may even be impossible to connect with the experts.

To help narrow down the performance gap between novices
and experts, we are investigating a code analysis tool whose
goal is to understand the problem-solving context like an
expert, so that it can advise the novice in a timely and
meaningful manner 1 [17]. In the literature, a computer
program that critiques human-generated solutions is called a
critic [18]. Critics have been successfully applied in clinical
medicine management, engineering design, word processing,
and software engineering [18].

In designing our API critic, we distinguish among three
kinds of critiques: criticisms (“this code behavior is inap-
propriate”), explanations (“what have caused the code to
behave this way”), and recommendations (“you may need this
next”). These three kinds of critiques are broadly designed to
address the respective well-known challenges in debugging,
understanding, and finding relevant solutions [12]. In general,
our API critic is expected to help bridge the long-standing
information gap between API designers and application pro-
grammers, and thereby increase the quality of the novice’s
code, as well as move him or her toward being an expert.

We have built a first prototype critic for the AWT/Swing
API. Specifically, we use symbolic execution [10] to trace API
client code to create program states. The critic then examines
the symbolic program states to recognize relevant behavioral
features present in the API client code, which helps capture the
problem-solving context. For example, a relevant behavioral
feature could be that a widget has no size information set when
it is made visible. Relevant features are defined as API usage
rules, which are implemented in Java code that examines the
symbolic program states. If the captured symbolic program
state matches, or triggers, a specified API usage rule, our tool

1The CriticAL project (A Critic for APIs and Libraries) can be found at
SourceForge (http://sf.net/p/critical). All URLs verified 2/14/2012.

978-1-4673-1216-5/12/$31.00 c© 2012 IEEE ICPC 2012, Passau, Germany53

will present context-appropriate documentation to critique the
API client code.

The prototype critic implemented an initial set of API rules
that was created based on our personal experience with the
layout logic in the AWT/Swing API. While functional, we
were not sure how complete and general our prototype was in
terms of covering layout-related problems. Hence, to justify,
and more importantly, to guide the further development of our
critic, we would need solid empirical data about API use from
the field. This motivated us to conduct a case study to analyze
and collect such data from the programming discussions in the
Swing Forum 2. Specifically, we want to answer two questions:

• What are the characteristics of API usage problems? How
are the needs for the three kinds of critiques grounded
empirically?

• Do similar problems recur? To what extent can our critic
help advise practical API usage problems?

The focus of this paper is to report on this case study, rather
than the detailed design of the critic, but more details about
the inner working of our critic infrastructure can be found
elsewhere [17]. Although several studies have been directed
toward answering the question why APIs are hard to learn
and use [6]–[8], [12], [16], prior research has not produced
concrete data that can be directly used to build an API support
tool. The results of our study, including a spreadsheet that
summarizes our analysis for each case of forum discussion,
along with the source code that we collected from the forum
(89 runnable programs), are made publicly available at

https://sourceforge.net/projects/critical/files/icpc2012/.
The remainder of this paper is organized as follows. Sec-

tion II presents a survey of related work. Section III presents
our research method. Results of our study are reported in
Sections IV (criticisms), V (explanations), and VI (recom-
mendations). We summarize our main findings in Section VII.
Section VIII discusses the threats to study validity. Finally,
Section IX concludes the paper.

II. RELATED WORK

Ko, Myers, and Aung identify six learning barriers in a
study of 40 novice programmers learning Visual Basic [12].
These barriers take into account several factors such as design,
selection, coordination, use, understanding, and the availability
of information about APIs. They make recommendations for
improving end-user programming systems by providing more
examples, improving the search experience, making the invis-
ible system rules more visible through error messages from
tools, making development environments more interactive, and
developing tools that could explain some of the complex
behavior of the APIs to the novices. These recommendations
align closely to the goals for the API supporting systems that
Fischer proposes [3]. Our critic is designed to meet these goals
as well [17].

Several studies have pointed out the importance of design
knowledge for the proper use of APIs. These include Robillard

2https://forums.oracle.com/forums/forum.jspa?forumID=950

and DeLine’s qualitative analysis of the API learning difficul-
ties perceived by Microsoft developers [16]; Hou’s quantitative
analysis of framework learning difficulties for undergraduate
students [6]; and Ko and Riche’s qualitative study on the
role of conceptual knowledge in using APIs [11]. Our critic
operationalizes the API design knowledge to help with API
use at the fine-grained level of API usage rules.

In addition to understanding framework design, it is also
important to find the right API elements for a programming
task. Code search tools such as Blueprint [1] bring code
examples to the IDE by keyword-based searching. Other
tools [5], [14], [19] help programmers locate documentation,
examples, and related code on the web. However, lacking
conceptual knowledge, novice programmers often find it hard
to formulate a useful search query and to assess the relevance
of the results [11]. Our critic can help grow the conceptual
knowledge by critiquing code behavior, and by recommending
precise suggestions directly within the programming context.

There are recommendation tools that extract and recommend
common API sequences, e.g., [20], but such tools do not
make design inferences based on program behavior and may
suggest irrelevant API elements without proper explanations.
It is not clear either how programmers would respond to such
irrelevant recommendations. Moreover, program analysis tools
provide only criticisms for generic design and implementation
bugs, whereas the goal of this work is to discover API-specific
rules. Tools for explaining program behavior through multiple
views have also been researched previously [15]. None of these
tools integrate the presentation of explanations, criticisms and
recommendations for APIs in the same way as ours does.

Our past work on analyzing the Swing Forum have also as-
sessed the challenges programmers face while using APIs [7]–
[9]. Different from these, this work results in a set of frame-
work rules and documentation related to GUI composition
and layout, which have been directly used in building an
API critic [17]. In particular, we show that the API-related
problems recur, and we conclude that our critic is promising
to become an effective tool for addressing these problems.

III. RESEARCH METHOD

In this case study, we are interested in answering two
research questions:

• What are the characteristics of API usage problems? How
are the needs for the three kinds of critiques grounded
empirically?

• Do similar problems recur? To what extent can our critic
help advise practical API usage problems?

To this end, we have conducted a case study of the online
programming questions in the Java Swing Forum. To conduct
an in-depth exploration, we have chosen to narrow down the
scope of the analysis and to focus our study on problems
related to GUI composition and layout in the Java Swing
API. GUI composition and layout is an essential topic in GUI
programming that is backed by a strong design, but which
many novices have great difficulty with. Lessons learned from
this study are likely to be generalizable to other similar APIs.

54

We employ Eisenhardt’s methodology for case study re-
search [2]. In our study, each forum discussion thread rep-
resents a real-world scenario (or a case, in terms of case study
research) where somebody is having certain problems with
the API. A typical discussion thread contains multiple posts
with questions, answers, and code examples. Many posted
code examples are self-contained, compilable programs so that
forum members can run to assess the problems. Since there
were too many discussion threads in the Swing Forum to go
through manually (more than 46,000 threads and more than
211,000 messages), to expedite the process, we searched the
forum with the keyword layout 3. This query returned 264
threads. We sequentially analyzed 150 of the 264 threads
returned, striving to understand each case thoroughly.

Eisenhardt’s method dictates that the observer must be
intimately familiar with the cases/subjects. To ensure that,
we have paid close attention to the fine details in the cases.
Specifically, in addition to reading the text throughout, we
compiled and ran each code, sometimes with necessary modi-
fications, in order to explore each case in detail. This process
not only helped us get the full understanding of each case,
but also resulted in a set of 89 test cases for testing our
critic. In particular, we were able to clearly separate a problem
about debugging or program behavior from those where the
OP requests for additional information. During the process,
we occasionally referred to the online tutorials 4 and the API
reference manual for help.

As Eisenhardt describes, the process of identifying cate-
gories from case data and encoding them is highly iterative.
In our study, the categories are the specific API use rules that
can be used to trigger helpful advice based on the symbolic
program states of the API client code. (For example rules, see
Section IV Criticisms, Section V Explanations, and Section VI
Recommendations). We label each thread with all rules that
we conclude are useful for the thread. Disagreements between
the two authors, in terms of both the interpretation and the
classification of the discussion threads, were resolved through
numerous discussions over the course of more than ten months.
The results of our analysis, in the form of a spreadsheet along
with the code collected from the forum, are available online.

Figure 1 shows the top-level categories that lead to a final
categorization of the 150 threads according to how they can
be supported by the three kinds of critiques:

• There were 9 threads for which we did not understand
what was the OP’s key question (Original Poster), due to
either poor English or unclear presentation, e.g 5.

• Among the 141 clear cases, 7 were not related to the
layout API that this study is focused on. For example,
in one case 6, although the word “layout” appears in the
messages, the OP was asking about how to change the

3Search URL: https://forums.oracle.com/forums/search.jspa?threadID=&q=
layout&objID=f950&dateRange=all&userID=&numResults=15&rankBy=
10001

4http://docs.oracle.com/javase/tutorial/uiswing/
5https://forums.oracle.com/forums/thread.jspa?messageID=5838236
6https://forums.oracle.com/forums/thread.jspa?messageID=5833268

Clear (141)

Layout API Specific (117)Non-Layout Related (7)

Recommendation
33 (D)+5 (I)+22 (A) = 60

Criticism
42 (D)+8 (I) = 50

Explanation
18 (D)+3 (I) = 21

Unclear (9)

Discussion Threads (150)

Requirement Specific (17)

Fig. 1. Classification of 150 Swing Forum discussion threads. D: Directly
helpful to an OP’s core problems; I: Indirectly helpful; A: Anticipated by
authors to be most likely helpful. A thread helped by multiple critiques of the
same kind is counted only once. Since a thread may be helped by more than
one kind of criticism, recommendation, and explanation, the total number for
critiques (50+21+60) is more than 117.

layout of the keyboard from English to German.
• 17 of the 141 clear threads were about application specific

requirements related to layout. For example, one OP
posted a GUI design diagram and asked how to achieve
it 7. In such cases, there is not much that our critic can
help other than consulting a human expert.

• The rest of 117 threads were related to layout and
GUI composition that we conclude can be supported
through the three forms of critiques, that is, criticisms (50
threads), explanations (21 threads), and recommendations
(60 threads).

The legends D, I, and A used in Figure 1 need to be defined.
If a critique could directly help 8 the OP to solve the asked
problem(s), we classified the thread under D. If a critique could
point out other problems in the OP’s code, but which were not
directly asked by the OP, then we classified the thread under I.
Based on the evidence collected from a thread, if we felt that
a recommendation could most likely help OP but the thread
did not have enough information for us to firmly classify it as
either D or I, we classified the thread under A (‘Anticipated’).
As shown in Figure 1, for recommendations, there are 33
threads that can be directly helped by some recommendations,
5 indirectly helped, and 22 anticipated to be helped. Finally,
if a thread was helped through more than one critique of the
same kind, we only added one to the total count for that kind
of critique (e.g., if a thread was helped by two criticisms, we
would only add one to the total count for criticisms).

Since our critic analyzes source code, we have paid partic-
ular attention to how code was used in the forum. Our result
shows that code is commonly used for communicating about
API usage problems. Based on the analysis of the 141 clear
threads, we found that 42.6% of the OPs (60 threads) posted
code when asking about their problems, and that in 38.3%,
or 54, of the 141 threads, some forum users replied with
code. In this study, we have collected a total of 89 runnable
Java programs and made them publicly available for other
researchers.

7https://forums.oracle.com/forums/thread.jspa?messageID=5888922
8If the critique is a criticism, ‘help’ means that it finds a bug. If the critique

is a recommendation, ‘help’ means that it provides information needed by the
user. If the critique is an explanation, ‘help’ means it answers a user’s question
about the code.

55

In the next three sections, we discuss in detail the major
findings of this study, that is, the critiquing rules that we have
identified for criticisms, explanations, and recommendations.

IV. CRITICISMS

A criticism informs the programmer about some undesirable
behavior in the API client code. Table I depicts the list
of specific criticism rules that we have identified in this
study, their current status of implementation, and how many
times each rule has been found to be useful. The Return-on-
Investment, which is defined as the ratio between the number
of times all rules have been applied and the number of rules,
gives a sense how general and useful a rule can be on average.
Section IV-A introduces these rules and briefly discusses how
they are checked by our critic. To provide more background
to understand each rule in context, five cases are presented as
examples in the follow-up subsections.

A. API Criticism Rules

To lay the necessary background for the remaining discus-
sion, we start with a review of some fundamentals of GUI
programming. A GUI programmed with the Swing API is
essentially a tree data structure. The root of the tree is a
special top-level widget such as a JFrame or a JDialog,
leaves are made of basic GUI widgets such as JLabel,
JTextField, and JButton, and internal nodes a container
such as JPanel, which contains other widgets recursively.
To be displayed, a widget must have a location and a
size computed or explicitly set. A container may rely on a
LayoutManager, which is essentially an algorithm, to au-
tomatically compute the size and location for each of its child
widget, based on layout-specific constraints and strategies.
Swing provides several built-in layout managers, each with a
different layout strategy, such as FlowLayout, BoxLayout,
GridLayout, GridBagLayout, and SpringLayout.
Rather than using a layout manager, a programmer also has
the option to manually specify the size and location for each
widget, which is also known as absolute positioning.

The following criticism rules in Table I are found useful to
enforce the internal consistencies of the GUI tree:

• Orphan GUI Objects: To be visible, all GUI objects must
be part of a GUI tree rooted at a top-level component such
as a JFrame or a JDialog.

• Parent Switching: When the containing GUI tree is in-
visible, moving a widget between two containers has no
effect and, thus, should be avoided.

• Missing Layout Constraints: When using a
SpringLayout, necessary constraints for the container
as well as its widgets must be specified to get the desired
effect.

• Misplaced Layout Constraints: Some layout managers,
such as BorderLayout and GridBagLayout, re-
quire layout specific constraints to position the child
components. When widgets are added to a container that
uses a layout manager, only constraints specific to the
layout manager should be used.

• One Layout, One Container: The relationship between
layout managers and containers must be one-to-one. Each
layout manager maintains the size and position informa-
tion of the child widgets for a container. Sharing a layout
manager may result in unpredictable GUI behavior. The
following example shows three panels sharing the same
BorderLayout 9:

BorderLayout layout = new BorderLayout();
JPanel ui = new JPanel(layout);
JPanel preview = new JPanel(layout);
JPanel figures = new JPanel(layout);

• Content Mismatch: When a container is made visible, it
must have the same set of child widgets with its layout
manager.

• Positioning and Sizing Constraints: When a
layout manager is used by a container, calling
setLocation(), setSize(), and setBounds()
methods on child components have no effect and
should not be used. When null layout is used, the
setPreferredSize(), setMinimumSize(), and
setMaximumSize() methods have no effect and
should not be used. The JFrame.pack() method
should be used only when the content pane of the frame
has a layout manager or when it has an explicitly set
preferred size.

• Dynamic GUIs: When the content of a container is
changed, it must be revalidated and repainted for the
change to take effect.

Each API targets to solve a particular set of problems. APIs,
thus, have some usage conventions. While it is not necessarily
always wrong to use an API in a way deviating from conven-
tions, such a use is nonetheless unusual, often showing signs
of confusion or neglection from the programmer. Spotting
such deviations can thus be useful. We have identified two
common deviations from conventions, which can be detected
by examining symbolic program states:

• Components Resizing Behavior: Not all components are
meant to be resized in both directions. By convention,
widgets such as JButton and JLabel should not be re-
sized in either direction. Widgets such as JTextField
and JPasswordField could grow horizontally but
not vertically. A violation of such conventions is often
undesirable 10. When they are violated, it can be useful to
teach the users how to prevent the widget from stretching.

• Table Design: A table-like GUI design is con-
ventionally achieved using one of GridLayout,
GridbagLayout, and SpringLayout with a single
container. Two adjacent containers cannot be used to cre-
ate a table-like design. This is because it would be hard,
if not impossible, to align the GUI widgets contained in
the two containers.

As shown in Table I, the criticism rules are enforced
as preconditions, postconditions, and invariants for the GUI

9https://forums.oracle.com/forums/thread.jspa?messageID=5890601
10https://forums.oracle.com/forums/thread.jspa?messageID=5854070

56

TABLE I
LIST OF HELPFUL CRITICISMS DISCOVERED IN THE FORUM (D: DIRECTLY

HELPFUL, I: INDIRECTLY HELPFUL, T: TOTAL). THE RATIO OF
RETURN-ON-INVESTMENT EQUALS TO THE NUMBER OF TIMES RULES ARE

HELPFUL (70), DIVIDED BY THE NUMBER OF RULES (11).

API Criticism Rules D / I / T impl’ted
Postconditions
Orphan GUI Objects 6 / 0 / 6 Yes
Missing Layout Constraints 2 / 2 / 4 No
Parent Switching 2 / 0 / 2 Yes
Misplaced Layout Constraints 3 / 1 / 4 Partially
Invariants
Content Mismatch 4 / 0 / 4 Yes
Dynamic GUIs 4 / 0 / 4 Yes
One Layout, One Container 3 / 0 / 3 Yes
Preconditions
JFrame.pack() Constraints 5 / 4 / 9 Yes
Positioning and Sizing Constraints 8 / 0 / 8 Yes
Deviation from Usage Conventions
Components Resizing Behavior 10 / 4 / 14 No
Table Design 10 / 2 / 12 Yes
Total 58 / 12 / 70
Return on Investment (70/11=) 6.36

layout API. Since none of these rules look overly complicated,
it is probably safe to speculate that programmers stumble upon
them mainly due to lack of awareness of these simple rules.
Hence a tool like our critic can be very useful.

B. Case 1 (Orphan Objects, Content Mismatch, Missing Con-
straints)

The code for Case 1 is shown in Listing 1 11, where the
CoordinateLayout class extends Swing’s layout manager
SpringLayout to specify the position of a widget relative
to its container. Our critic reveals three problems for the code.

Listing 1. Code for Case 1 (modified).

1 public class CoordinateLayout extends SpringLayout {
2 SpringLayout main; Container cont;
3 public CoordinateLayout(Container ct) {
4 main = new SpringLayout(); cont = ct; ...
5 }
6 public void addComponent(Component comp, int x, int y) {
7 main.putConstraint(WEST, comp, x, WEST, cont); // X−axis
8 main.putConstraint(NORTH, comp, y, NORTH, cont); // Y−axis
9 }}

10 public class CoordinateLayoutTest {
11 public static void main(String[] args) {
12 JFrame frame = new JFrame(‘‘TEST’’);
13 JPanel pane = new JPanel();
14 CoordinateLayout layout = new CoordinateLayout(pane);
15 pane.setLayout(layout);
16 JLabel aLabel = new JLabel(‘‘First Name:’’);
17 JButton aButton = new JButton(‘‘First’’);
18 // layout contains widgets but container does not
19 layout.addComponent(aLabel, 5, 5);
20 layout.addComponent(aButton, 15, 5);
21 frame.setSize(300,300);
22 frame.setContentPane(pane);
23 frame.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);
24 frame.setVisible(true);
25 }}

11https://forums.oracle.com/forums/thread.jspa?messageID=5698221

(a) Widgets Invisible (b) Widgets Visible

Fig. 2. JFrame in Listing 1 before and after the fix for orphan widgets.

(a) Before (b) After

Fig. 3. Listing 1 before and after the patch for missing constraints.

First, the SpringLayout object created at line 4 and
referenced by main is not used by any container. Hence
it becomes an orphan GUI object. In fact, the main ob-
ject is unnecessary, and the main.putConstraint()
at lines 7 and 8 should be replaced by calls to
this.putConstraint(). Although our critic does not
directly give this advice, pointing out the orphan layout object
should help guide the OP closer to the right solution.

Second, since aLabel and aButton are not added to the
pane, they become orphan objects too, and, thus, are invisible
when the frame is made visible, as shown in Figure 2(a).
Related, our critic also reports a problem of Container and
Layout Content Mismatch for pane. This is because when
the pane is made visible, it contains no child widget but
its layout contains both aLabel and aButton. These two
objects can be added by calling pane.add(aLabel);
pane.add(aButton); before line 22. As shown in Fig-
ure 2(b), the two widgets then become visible.

Third, our critic points out that the code fails to specify the
constraints for the right (EAST) and bottom (SOUTH) edges
of the content pane. As a result, the layout manager cannot
correctly compute the size for the content pane. This problem
is masked by the call to setSize() at line 21, but can be
revealed by calling frame.pack(), which forces the layout
manager to compute its size; as shown in Figure 3(a), the
widgets are clipped. The code that follows can be applied to
replace lines 19-20 in Listing 1, resulting in the view shown
in Figure 3(b).

// Updated the coordinates for the button
layout.addComponent(aLabel, 5, 5);
layout.addComponent(aButton, 80, 5);
// Constraints for content pane with respect to aButton
layout.putConstraint(EAST, pane, 5, EAST, aButton);
layout.putConstraint(SOUTH, pane, 5, SOUTH, aButton);

C. Case 2 (Parent Switching, Positioning and Sizing)

Our critic reveals two problems for Case 2 12 (Listing 2).
The first problem is that jLabel4 is first added to the content
pane (line 7) but later to another container jPanel1 (line 8).

12https://forums.oracle.com/forums/thread.jspa?messageID=5714432

57

(a) With null layout and
pack().

(b) Calling frame.setSize()) to
make other GUI widgets visible (scaled).

Fig. 4. The JFrame in Case 2 (Listing 2).

As a result, when the GUI tree is made visible, jLabel4 is
visible only under jPanel1 but not under the content pane. In
fact, the OP complained exactly about this. The critic advises
the OP to create a new JLabel.

The second problem is calling pack() method on a
JFrame whose layout manager is set to null. When the
content pane’s layout manager is set to null, and it does not
have a preferred size set, the pack() method cannot compute
the desired size of the window. As a result, the window
becomes too small to show its title and content (Figure 4(a)).
Instead of pack(), setSize() can be called to explicitly
specify a size for the frame (Figure 4(b)).

There are cases where a call to frame.setSize() and
frame.pack() appear together, e.g., this case 13. These two
methods cancel the effect of one another and should not be
used together.

Listing 2. Case 2 (Parent Switching Positioning and Sizing).

1 JFrame frame = new JFrame();
2 frame.getContentPane().setLayout(null); ...
3 jPanel1 = new javax.swing.JPanel();
4 jPanel1.setBounds(700, 50, 270, 400);
5 jPanel1.setLayout(null)
6 frame.getContentPane().add(jPanel1); ...
7 frame.getContentPane().add(jLabel4);
8 jPanel1.add(jLabel4);
9 jLabel4.setBounds(700, 70, 180, 14); ...

10 frame.pack()
11 frame.setVisible(true);

D. Case 3 (Dynamic GUIs)

As shown in Listing 3 14, the OP of Case 3 wants to switch
widget c (line 1) and lastSelectedLabel in the container
puzzlePanel. But the switching is not immediately visible
but only after the frame is resized manually.

The process of adding and removing components in
the GUI subtree of puzzlePanel makes the container
invalid and the changes ineffective. Generally, such an
issue arises from the dynamic construction of a GUI.
The solution for the user is to explicitly tell the Swing
framework to redo the layout. It can be done in two

13https://forums.oracle.com/forums/thread.jspa?messageID=5774019
14https://forums.oracle.com/forums/thread.jspa?messageID=5861121

ways: by either calling puzzlePanel.revalidate();
puzzlePanel.repaint();, or by calling pack();
on the root widget (JFrame) instead of just the
this.invalidate(); this.repaint(); methods in
lines 9 and 10. The call to revalidate() first invalidates
the previously computed size and position of the widgets
and recomputes them by performing relayout of the changed
container. The pack() method recomputes the layout of
the whole GUI tree and not just the modified container. The
modifications, however, becomes apparent when the frame
resizes because the resizing event forces relayout.

Listing 3. Dynamic GUIs (modified).

1 puzzlePanel.remove(c);
2 puzzlePanel.remove(lastSelectedLabel);
3 gbc.gridx=cX;
4 gbc.gridy=cY;
5 puzzlePanel.add(lastSelectedLabel,gbc);
6 gbc.gridx=lX;
7 gbc.gridy=lY;
8 puzzlePanel.add(c,gbc);
9 this.invalidate();

10 this.repaint();

E. Case 4 (Content Mismatch, Positioning and Sizing)
Our critic reveals two problems from the code in List-

ing 4 15. The content pane of the JWindow object has a
BorderLayout. The content pane has all three labels but
its BorderLayout contains only the last added label (Line
2). Hence the first two widgets are positioned using their
specified sizes and locations and the last label positioned by
the layout manager. As depicted in Figure 5(a), the label Line
2 is positioned at the center location but the other two labels
are located at their specified positions.

There can be two solutions to this problem. The first is
to use null layout by calling cp.setLayout(null) and
completely rely on absolute positioning. Figure 5(b) shows the
effect of this solution. The second solution, and a better one,
is to use only layout managers, without hard-coding sizes and
positions.

Listing 4. A JWindow that violates size constraints.

1 private void createAndShowWindow() {
2 JWindow win= new JWindow(frame);
3 win.setSize(120, 90);
4 win.setLocation(90, 50);
5 Container cp= win.getContentPane();
6 cp.setBackground(Color.YELLOW);
7 JLabel lb= new JLabel(‘‘<html><u>Header</u></html>’’);
8 lb.setBounds(35,5, 80,20);
9 cp.add(lb);

10 for (int i=0; i<2; i++) {
11 lb= new JLabel(‘‘Line ’’+(i+1));
12 lb.setBounds(10,i∗20+30, 80,20);
13 cp.add(lb);
14 }}
15 win.setVisible(true);

15http://forums.oracle.com/forums/thread.jspa?messageID=9281019

58

(a) With layout (b) Without layout

Fig. 5. The view of JWindow before and after the fix.

F. Case 5 (Table Design, Resizing Conventions)

The code for Case 5 is shown in Listing 5 16. Although it
gives an illusion of a table-like view as shown in Figure 6(a),
where every widget seems to be positioned properly, this is
only coincidental, and our critic gives two criticisms.

First, when the text in rentFee is changed from “Rent
Fee” to “Rental Fee”, as shown in Figure 6(b), the two labels
become different in length and the table columns are not
properly aligned any more. In general, a table design that
spans multiple containers often has alignment issues that are
hard to solve. Instead of using multiple containers, the user is
advised to use one of GridLayout, GridBagLayout, or
SpringLayout.

Second, when the frame is resized, the text fields grow both
horizontally and vertically, violating the resizing convention
that a text field does not grow vertically. This is because
BoxLayout is used and the text fields have a large default
maximum size that causes them to grow.

Listing 5. A table implemented using multiple containers (modified).

1 public static void main(String[] args) {
2 JFrame frame = new JFrame(‘‘DVD rental center’’);
3 frame.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);
4 JPanel pane = (JPanel)frame.getContentPane();
5 pane.setLayout(new BoxLayout(pane, BoxLayout.Y AXIS));
6

7 JLabel rentFee = new JLabel(‘‘Rent Fee ’’);
8 JLabel lateFee = new JLabel(‘‘Late Fee ’’);
9 JTextField rentFeeField = new JTextField(10);

10 JTextField lateFeeField = new JTextField(10);
11 JPanel p1 = new JPanel(true);
12 JPanel p2 = new JPanel(true);
13 p1.setLayout(new BoxLayout(p1, BoxLayout.LINE AXIS));
14 p1.add(rentFee);
15 p1.add(rentFeeField);
16 p1.setAlignmentX(JPanel.LEFT ALIGNMENT);
17 pane.add(p1);
18 p2.setLayout(new BoxLayout(p2, BoxLayout.LINE AXIS));
19 p2.add(lateFee);
20 p2.add(lateFeeField);
21 p2.setAlignmentX(JPanel.LEFT ALIGNMENT);
22 pane.add(p2); ...
23 }

V. EXPLANATIONS

Our critic produces an explanation for those API elements
that many users commonly find hard to work with, directly

16https://forums.oracle.com/forums/thread.jspa?messageID=5790663

(a) Labels in the same length. (b) Labels in different lengths.

Fig. 6. Table design achieved using three BoxLayouts.

TABLE II
LIST OF HELPFUL EXPLANATIONS DISCOVERED IN THE FORUM. (D:

DIRECTLY, I: INDIRECTLY, T: TOTAL)

API Explanation Rules D / I / T impl’ted
Behavior of Null Layout 9 / 3 / 12 Yes
Behavior of GridbagLayout 5 / 0 / 5 No
Resizing Behavior of BorderLayout 4 / 0 / 4 Yes
API Specific Explanations 3 / 0 / 3 No
Total 21 / 3 / 24
Return on Investment (24/4=) 6

in the context where they are used. While explanations are
also inherently part of criticisms and recommendations, we
have found that explanations can help programmers just by
themselves. Programmers often use an API without the full
knowledge about its behavior and interaction with other code.
They tend to be satisfied as long as the API elements appear
to fulfill their needs, ignoring potential side-effects that often
become visible later in the development. Explanations are
useful in communicating such non-obvious, subtle behavior
of the API. In this way, they facilitate the programmers in
reasoning about their code.

In this section, we present some of the useful expla-
nations that we have identified for GUI layout (Table II).
Since programmers at different levels of expertise may need
explanations with various levels of details, our study also
demonstrates how opportunities for explaining API elements
can be identified on an as-needed basis, by looking at actual
forum discussions.

A. Behavior of Null Layout

As discussed in Section IV-A, when a container has a null
layout, it must use absolute positioning to position its children.
As a result, when the container is resized, its children will
not resize automatically. Several OPs used null layout but
still expected the child widgets to be resized automatically 17.
Our critic explains this implication of null layout to avoid
the potential confusion. In addition, since the use of absolute
positioning may adversely affect the appearance of the GUI
when ported from one platform to another, the user should be
advised about this behavior as well.

B. Behavior of GridbagLayout

GridBagLayout is a layout manager 18 that positions
its child widgets inside a grid. It allows a child to span
multiple rows and columns. The visual properties for each
child, such as size and growth, are specified as parameters via

17https://forums.oracle.com/forums/thread.jspa?messageID=5849188
18http://docs.oracle.com/javase/tutorial/uiswing/layout/gridbag.html

59

a GridbagConstraint object. Some OPs were confused
as to which constraint parameter causes what visual effect 19.
For example, in the absence of at least one non-zero value for
weightx (weighty) for a column (row), that column (row)
will not grow with the enclosing container. Moreover, in the
absence of a fill property, a child component at each cell will
not grow with the cell, leaving empty gap when the cell grows
bigger. Explaining these can be very helpful for understanding
the behavior of the API client code.

C. Resizing Behavior of BorderLayout

A BorderLayout positions its children in five pre-defined
locations: center, north, south, east, and west. Some novices
can be puzzled to by its exact behavior. For example, the
element in the center takes all of the empty space and ignores
the size property explicitly set by the user when resized. As
the window becomes smaller, the center widget also grows
smaller and eventually gets clipped. Only when there is no
more space available for the center widget, do the widgets in
south and then in north get clipped in the vertical axis and
the widgets in west and then east get clipped in the horizontal
axis. Such explanations can be helpful for the programmer to
understand BorderLayout properly and also in deciding if
the layout is the right choice 20.

D. API Specific Explanations

Some API elements need to be explained to help program-
mers understand certain behavior of the API client code. For
instance, the call to setMaximumSize() on a basic widget
such as JButton and JLabel can cause visual problems
on a different platform where the maximum size set may
be smaller than the required size 21. Furthermore, setting the
preferred size of one component has the surprising side effect
of forcing all components in a GridLayout to have the
same size 22. Explaining these API elements can be useful
for understanding the API client code.

VI. RECOMMENDATIONS

What differs an expert from a novice programmer is the
amount of information they have about the framework and
API. To help novices seek for API information, our critic
recommends relevant API elements and documentation within
the programming context. With enough of the programming
context taken into account, the tool can make more precise rec-
ommendations on the use of API elements. It can also present
competing solutions so that the user can choose the right one
based on his or her needs. A key is the capability to infer
the programmer’s intent from the API client code. However,
even with less knowledge of the programming context, our
critic should still be able to make generic recommendations,
just enough to push novices toward the right direction when
they get stuck with their code. In both cases, recommendations

19https://forums.oracle.com/forums/thread.jspa?messageID=5743612
20https://forums.oracle.com/forums/thread.jspa?messageID=5849282
21http://forums.oracle.com/forums/thread.jspa?messageID=5698635
22http://forums.oracle.com/forums/thread.jspa?messageID=5828313

TABLE III
LIST OF HELPFUL RECOMMENDATIONS DISCOVERED IN THE FORUM. (D:
DIRECTLY HELPFUL, I: INDIRECTLY HELPFUL, A: ANTICIPATED TO BE

HELPFUL, T: TOTAL)

API Recommendation Rules D / I / A / T impl’ted
Confusing API Elements 4 / 1 / 0 / 5 Yes
Generic Recommendations 18 / 0 / 25 / 43 Partially
Usage Automata 4 / 3 / 0 / 7 Partially
Alternative Solutions 2 / 1 / 0 / 3 No
Layout Recommendations 5 / 0 / 1 / 6 No
Total 33 / 5 / 26 / 64
Return on Investment (64/5=) 12.8

bring information where the user needs the most. Table III
shows a list of useful recommendations identified from the
forum. We discuss them in order of ease of implementation.

A. Confusing API Elements

Sometimes, a group of API elements may share common
terms in their names and perform related functions. This may
confuse users in selecting the right one to use 23. A group of
such API elements from Swing are listed as follows:

• setAlignmentX() and setAlignmentY()
of JComponent, which take parameters such as
TOP_ALIGNMENT and LEFT_ALIGNMENT.

• setHorizontalAlignment() and
setVerticalAlignment() of JLabel and
JButton, with parameters such as TOP and LEFT.

• setHorizontalTextPosition() and
setVerticalTextPosition() of JLabel
and JButton, which takes its own unique set of
parameters than the two groups above.

The first group above is designed to be used with
BoxLayout to align its child widgets. The second is used
by a component to align its content within itself. The third
group is used for aligning the text within a JLabel and a
JButton relative to its icon image. Whenever any one of
the above confusing API elements is used with a JLabel or
a JButton, a recommendation can be made to clarify the
distinction among these three groups.

B. Generic Recommendations

Our critic recommends a list of How-To documents for the
most frequently asked questions compiled from the discussion
threads. Currently, the list includes the following topics: “How
to use layout managers?”, “How to do absolute positioning?”,
“How to dynamically change the location of a widget?”, “How
to add gap between components using a layout manager such
as a FlowLayout?”, and “How to combine multiple layout
managers to achieve complex designs?”. This list is presented
to the user independent of what they are working on. In this
way, the critic could still be helpful even when the programmer
just begins to work on an API. This recommendation should
be very useful for novices who do not have much conceptual
knowledge of the API [11].

23http://forums.oracle.com/forums/thread.jspa?messageID=5827139

60

C. Usage Automata

Recommending future set of API elements can be helpful
too. To improve the relevance of the recommended elements
and avoid redundancy, our critic recommends only relevant
elements that are not used in the current program. For exam-
ple, recommending how to create a border for the JPanel
in 24 would help solve the problem of the user. Similarly,
a recommendation for the unused alignment properties of
FlowLayout and BoxLayout as well as the missing con-
straints for BorderLayout and GridBagLayout could be
helpful for novice programmers. However, further research is
needed on how to strike a good balance between the quality
and quantity of recommendations and the amount of technical
sophistication.

D. Alternative Design

The designer of an API usually has some intent as
to what and how the API should be used for. It is al-
most always beneficial to use the API elements intended
for the problem at hand rather than trying other API ele-
ments and complicating the code. Consider the code snippet
in Listing 6 25. The rootPanel object (JPanel) uses
GridBagLayout. Each cell of the layout can be configured
to behave in a certain way using GridBagConstraints.
The GridBagConstraints used in lines 2-6 and 8 is
essentially trying to achieve the behavior of a FlowLayout
with left alignment (lines 12-15) for rootPanel. Our critic
can detect this use and suggest the much shorter, alternative
solution that achieves the same effect as the existing, much
more complicated one.

Listing 6. Using GridBagLayout where FlowLayout suited better.

1 protected void relayout() { // Complicated way
2 final GridBagConstraints gbc = new GridBagConstraints();
3 gbc.anchor = GridBagConstraints.LINE START; // Start left
4 gbc.weighty = 0.0; // Grow with a factor of 0
5 gbc.fill = GridBagConstraints.NONE; // Do not fill extra space
6 gbc.insets = new Insets(0, 10, 0, 10); // External padding ...
7 for (int i = 0; i < panels.size();i++) {
8 gbc.gridx = i; // Single line, increase column when adding
9 rootPanel.add(panels.get(i), gbc); // Add element with constraint

10 }...}
11 protected void relayout() { // Simple alternative
12 rootPanel.setLayout(new FlowLayout(FlowLayout.LEFT));
13 for (int i = 0; i < panels.size();i++) {
14 rootPanel.add(panels.get(i)); // No constraint needed
15 } ...}

E. Layout Recommendations

Given multiple layout managers, a common problem is to
select the right one to use [12]. A recommender can be created
to help with this situation. For example, when a container has
two components , one of which is a JTextarea and the other
JTabbedPane, we can recommend BorderLayout on the

24http://forums.oracle.com/forums/thread.jspa?messageID=5716439
25https://forums.oracle.com/forums/thread.jspa?messageID=5729204

basis that the text area is known to be growable 26. Similarly,
we can also recommend BoxLayout and GridLayout in
case the user wants them to grow proportionally, but definitely
not FlowLayout. Furthermore, if the user wants to partition
the container disproportionately, then a GridBagLayout can
be recommended.

VII. DISCUSSION

In this section, we summarize our observations resulted
from this study as answers to our research questions.

As shown in Figure 1, out of 134 layout-related API
discussions, 117, or 87.3% can be helped by our critic; there
are only 17 truly requirements specific problems that our
critic cannot help, since it has no knowledge of the unique
user requirements. In addition, the data in Figure 1 also
indicate that all three forms of critiques are needed, and
that recommendations and explanations are at least equally
important as criticisms for supporting programmers.

To be useful, the critic must be equipped with high-quality
API usage rules to accurately anticipate a user’s goals and
address his or her needs. This study supplies the specific API
usage rules that can be used in the critic. Interestingly, we
find that the discovered API usage rules are nothing more
than the all too familiar preconditions, postconditions, and
invariants (e.g., the the criticism rules shown in Table I) and,
thus, can be enforced by tracing program states and actions.
Furthermore, since in retrospect, none of these rules appear to
be overly complicated, we conclude that raising programmers’
awareness of these rules is the key for improving API usability,
and our critic can have a very promising and useful role to
play in doing so.

Our study also shows evidence that the discovered API rules
have been applied to multiple instances of the same problem.
Therefore, the proposed critic can be made general rather than
only solve unique individual problems. To help measure how
often a problem recurs and an API usage rule can be applied,
we have calculated a rate of Return On Investment (ROI) for
each of the three kinds of critiques in Tables I, II, and III.
When resources are limited, the ROIs can also be used to
prioritize the list of API usage rules to determine which subset
should be implemented first.

We have found encouraging evidence that our critic can be
a valuable complement for humans, despite the deployment of
popular online forums and Q&A sites. In particular, our critic
has been found to be helpful not only for cases that have been
provided a solution but also for those without a solution. In
particular, we have found that 44%, or 62, of the 141 clear
threads did not contain a solution. Interestingly, 75.8%, or 47,
of the 62 threads can be supported by the critiquing rules
that we developed in this study, 16 through criticisms, 10
through explanations, and 21 through recommendations. Why
were these threads not answered by forum participants? This
is most likely because many of them (25 threads) contain a
long piece of code and parsing through such long code to find

26http://forums.oracle.com/forums/thread.jspa?messageID=9201990

61

problems is a cumbersome task. Our critic can be particularly
valuable for such cases, complementing human capabilities.

Finally, where do we get rules and what are the character-
istics of these rules? At a level higher than the specific rules,
we can categorize them into the following common sources:

• Internal consistency rules derived from pre-/post-
conditions as well as invariants for an API;

• Common expectations on program behavior, such as the
requirement that a text field and a button normally should
not grow vertically;

• Requirements for some common user tasks, such as
creating a m x n table, which can be inferred from
program states;

• Additional solution procedures, or potentially surprising
information, that are commonly used together with solu-
tions already present in the API client code.

VIII. THREATS TO VALIDITY

The results reported in this paper are based on classifying
the layout-related discussions in the Swing Forum. Since the
layout API has a strong flavor of a tree data structure, other
APIs may exhibit different proportions for the three kinds of
critiques. Nevertheless, we anticipate that our research method
can be applied to study other frameworks and APIs.

In this study, we identified API usage rules and categorized
the discussion threads according to whether they can be helped
by these rules or not. These are done solely based on our
own interpretation of the forum discussions. Since we cannot
directly interview the original poster, we have to assume
certain facts about the code and sometimes, an OP’s intention.
Hence, there is a danger that we may have misinterpreted some
situations, or we may not have addressed all of the concerns
of the original poster in our derived rule set. However, both
of these concerns have been mitigated by the good amount
of efforts that we have put into this study, by the use of two
raters, and by achieving the final consensus between the two
raters on the analyzed cases. Furthermore, we want to stress
that our past experience with the Swing framework and its
forums [7]–[9] should also have helped.

When calculating ROIs for API rules, we have merged a
few related rules to simplify the presentation. Nevertheless,
the presented ROI gives some insight as to the effectiveness
and the applicability of the API rules. It should also be noted
that the 150 discussions studied is only a very small subset of
all the Swing Forum discussions. There are good reasons to
believe that there are more cases in the forum that these rules
can be applied to.

IX. CONCLUSION

To help with using APIs, we are building a critic to advise
the usage of an API based on its formal semantics. Specifically,
our critic offers advice when the symbolic state of the API
client code triggers any API usage rules. To assess to what
extent our critic can help solve practical API usage problems
and what kinds of API usage rule can be formulated, we
manually analyzed 150 discussion threads from the Java Swing

forum, from which we created three sets of API usage rules
related to the layout logic. We categorized the discussion
threads according to how they can be helped by the critic into
criticisms, explanations, and recommendations. We illustrate
these API usage rules with concrete examples. We find that
all three kinds of critiques are useful and justified, API
problems of the same nature appear repeatedly in the forum,
and that API problems of the same nature can be addressed by
implementing a new API usage rule. We describe the nature
of the API usage rules and how they can be checked. We also
discuss the kind of code behavior inference that is needed in
order to make the critic smarter and more powerful and the
tradeoffs involved.

ACKNOWLEDGMENT

We thank Ahmed E. Hassan for encouraging us to write
up this study, and the three reviewers whose feedback and
suggestions help improve the presentation of this paper.

REFERENCES

[1] J. Brandt, M. Dontcheva, M. Weskamp, and S. R. Klemmer, “Example-
centric programming: Integrating web search into the development
environment,” in CHI, 2010, pp. 513–522.

[2] K. M. Eisenhardt, “Building theories from case study research,”
Academy of Management Review, vol. 14, no. 4, pp. 532–550, 1989.

[3] G. Fischer, “Cognitive view of reuse and redesign,” IEEE Softw., vol. 4,
pp. 60–72, July 1987.

[4] G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T. Dumais, “The
vocabulary problem in human-system communication,” Commun. ACM,
vol. 30, no. 11, pp. 964–971, 1987.

[5] R. Hoffmann, J. Fogarty, and D. S. Weld, “Assieme: Finding and lever-
aging implicit references in a web search interface for programmers,”
in UIST, 2007, pp. 13–22.

[6] D. Hou, “Investigating the effects of framework design knowledge in
example-based framework learning,” in ICSM, 2008, pp. 37–46.

[7] D. Hou and L. Li, “Obstacles in using frameworks and APIs: An
exploratory study of programmers’ newsgroup discussions,” in ICPC,
2011, pp. 91–100.

[8] D. Hou, C. Rupakheti, and H. Hoover, “Documenting and evaluating
scattered concerns for framework usability: A case study,” in APSEC,
2008, pp. 213 –220.

[9] D. Hou, K. Wong, and H. J. Hoover, “What can programmer questions
tell us about frameworks?” in IWPC, 2005, pp. 87–96.

[10] J. C. King, “Symbolic execution and program testing,” Commun. ACM,
vol. 19, pp. 385–394, July 1976.

[11] A. J. Ko and Y. Riche, “The role of conceptual knowledge in API
usability,” in VL/HCC, 2011, pp. 173–176.

[12] A. J. Ko, B. A. Myers, and H. H. Aung, “Six learning barriers in end-
user programming systems,” in VL/HCC, 2004, pp. 199–206.

[13] L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak, and B. Hartmann,
“Design lessons from the fastest Q&A site in the west,” in CHI, 2011,
pp. 2857–2866.

[14] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu,
“Portfolio: Finding relevant functions and their usage,” in ICSE, 2011,
pp. 111–120.

[15] D. F. Redmiles, “Reducing the variability of programmers’ performance
through explained examples,” in CHI, 1993, pp. 67–73.

[16] M. P. Robillard and R. DeLine, “A field study of API learning obstacles,”
Empirical Softw. Engg., vol. 16, pp. 703–732, 2011.

[17] C. R. Rupakheti and D. Hou, “CriticAL: A Critic for APIs and
Libraries,” in ICPC, 2012, 3 pp. Tool Demo.

[18] B. G. Silverman, “Survey of expert critiquing systems: Practical and
theoretical frontiers,” Commun. ACM, vol. 35, no. 4, pp. 106–127, 1992.

[19] J. Stylos and B. A. Myers, “Mica: A web-search tool for finding API
components and examples,” in VLHCC, 2006, pp. 195–202.

[20] T. Xie and J. Pei, “MAPO: Mining API usages from open source
repositories,” in MSR, 2006, pp. 54–57.

62

