
How Do Professional Developers Comprehend Software?

Tobias Roehm
TU München

Munich, Germany
roehm@cs.tum.edu

Rebecca Tiarks
University of Bremen

Bremen, Germany
beccs@tzi.de

Rainer Koschke
University of Bremen

Bremen, Germany
koschke@tzi.de

Walid Maalej
TU München

Munich, Germany
maalejw@cs.tum.edu

Abstract—Research in program comprehension has consid-
erably evolved over the past two decades. However, only little is
known about how developers practice program comprehension
under time and project pressure, and which methods and
tools proposed by researchers are used in industry. This
paper reports on an observational study of 28 professional
developers from seven companies, investigating how developers
comprehend software. In particular we focus on the strategies
followed, information needed, and tools used.

We found that developers put themselves in the role of
end users by inspecting user interfaces. They try to avoid
program comprehension, and employ recurring, structured
comprehension strategies depending on work context. Further,
we found that standards and experience facilitate compre-
hension. Program comprehension was considered a subtask
of other maintenance tasks rather than a task by itself.
We also found that face-to-face communication is preferred
to documentation. Overall, our results show a gap between
program comprehension research and practice as we did not
observe any use of state of the art comprehension tools and
developers seem to be unaware of them. Our findings call for
further careful analysis and for reconsidering research agendas.

Keywords-program comprehension; empirical studies; soft-
ware documentation; maintenance; context awareness

I. INTRODUCTION

Program comprehension is an important activity in soft-
ware maintenance. It consumes about half of the time
spent by developers in maintenance as reported by Fjeldstad
and Hamlen [5]. According to Singer et al. [22], program
comprehension mainly takes place before changing code,
because developers must explore source code and other arti-
facts to find and understand the subset of the code relevant to
the intended change. The strategies followed to understand
software might vary among developers depending on their
personality, experience, skills, and task at hand.

The goal of this study is to review the state of the practice
in program comprehension and learn how programmers in
industry comprehend programs. We aim at gaining deep
insights into program comprehension practice, examining the
usage of research results in practice, validating findings of
similar studies, and overcoming limitations of earlier studies.
Furthermore, hypotheses generated from our observations
serve as starting point for a need-driven research agenda.

Earlier studies that empirically survey program com-
prehension practices suffer from limitations calling for a

deeper, up-to-date examination. For example, the studies of
Fjeldstad and Hamlen [5] and Singer et al. [22] are rather
old. Since their conduction new programming languages
like Java and practices like agile development and open
source development have become popular. LaToza et al. [10]
study developers from a single company and Robillard et
al. [17] study only five developers in a lab setting. Our
study surveys developers working in different companies
of different size using different technologies and has a
larger sample size of 28 developers. Further, we follow a
different method enabling detailed descriptions of rationale
and thoughts behind observed behavior.

The contribution of this paper is threefold. First, it de-
scribes in detail strategies followed, information needed,
and tools used during program comprehension as well as
the rationale behind. Second, we develop a catalogue of
hypotheses about program comprehension that can be used
to guide further research effort and tool development. Third,
we describe how we conducted our study, which consists of
observations and interviews. The study design can be reused
in other studies to understand developer behavior.

The paper is organized as follows. Section II describes
the design of our study. Section III summarizes the findings
and presents hypotheses derived from observations. Section
IV discusses the implications of our findings and threads to
validity. Finally, Section V presents related work and Section
VI concludes the paper and sketches future work.

II. STUDY DESIGN

After presenting the research questions of the study,
we detail on the method followed, including participant
recruitment, and reliability measures.

A. Research Questions

The goal of this study is to qualitatively explore how
program comprehension is done in software industry. This
includes studying how program comprehension tools are
used in practice, generating hypotheses about industrial pro-
gram comprehension, and testing established theories. We
refrain from quantifying certain comprehension aspects as
the distribution and characteristics of the whole population
is unknown and our sample is relatively small in statistical
terms. Further, we do not explicitly aim for new theories.

978-1-4673-1067-3/12/$31.00 c© 2012 IEEE ICSE 2012, Zurich, Switzerland255

In order to structure the study and focus our effort, we
investigate three main areas: strategies developers follow,
information developers interact with or that is missing, and
tools used. We formulate the research questions as follows:

• RQ1: Which strategies (including steps and activities)
do developers follow to comprehend programs?

• RQ2: Which sources of information do developers use
during program comprehension?

• RQ3: Which information is missing?
• RQ4: Which tools do developers use when understand-

ing programs and how?

B. Research Method

Our study is designed to meet two requirements: realism
and replication. To meet the requirement of realism, we
chose situations representative for realistic program com-
prehension tasks. We observed developers in their real work
environment. We did not predefine the tasks the partici-
pants worked on. The task was chosen by the participants
themselves. We only requested a task that included program
comprehension activities and that required the participant to
spend about one hour of time in order to ensure that the
task was large enough to evolve a program comprehension
strategy. To meet the requirement of replication, we prepared
material such as questionnaires and a protocol form and
describe our study in detail in this section.

Our method includes a combination of observation and
interview, with the observation mainly targeting what devel-
opers do and the interview mainly targeting the motivation
behind developer’s actions. This combination was most
appropriate to answer our research questions. Automated
observations through instrumentation of development en-
vironment do not reveal reasons and motivations behind
observed behavior. Experiments imply controlling particular
variables, assuming they are independent. Finally, surveys
or interviews assume that the questions are correct and
complete. They can be short in explaining real behavior in
detail and answers might deviate from real practices.

1) Observation: During the observation session, we con-
centrated on which and when questions like “which activities
does a developer perform?”. For the observation session,
we used the think-aloud method, i.e. we asked participants
to comment on what they are doing thereby enabling the
observers to understand what is going on and get access to
thoughts in participants’ mind. In case participants stopped
talking, we asked questions to start the information flow
again. But we took care not to interrupt the workflow of
participants and deferred questions calling for long, detailed
answers to the subsequent interview. Before starting, we
shortly presented the study goals to the participants, its
exploratory nature (i.e. no right or wrong behavior was
expected), and assured them anonymity and confidentiality.

To document the observation sessions, we created a
protocol covering the current time, a description of the

Table I
PROTOCOL EXCERPT OF PARTICIPANT P5

Daytime Relative
time

Observation/ Quote Postponed
questions

...
10:19 00:27 Read Jira ticket

Comment: “this sounds like the
ticket from yesterday”

What
information
considered?

10:20 00:28 Refresh source code repository
10:24 00:32 Publish code to local Tomcat
10:26 00:34 Debug code in local Tomcat Why

debugging?
10:28 00:36 Open web application in browser

and enter text into form fields
10:29 00:37 Change configuration in XML file

content.xml
Exclamation: “not this complicated
xml file again”

How known
what to
change?

10:30 00:38 Publish changes to local Tomcat
10:31 00:39 Debug local Tomcat
...

participants’ actions, and quotes. An excerpt of such a
protocol is shown in Table I. When we discovered interesting
issues like unclear actions or counterintuitive behavior, we
noted them down and discussed them in the subsequent
interview.

We observed a single participant for 45 minutes, leaving
us another 45 minutes for the interview and not spending
more than 1,5 hours in total. The reason for this time con-
straint was not to observe people too long as concentration
decreases over time. In each session, one participant was
observed and interviewed by one observer.

2) Interview: During the observation sessions, we got a
good understanding of the context of participants and their
workflows. In order to gain more insight about rationale
behind actions and figure out whether the observed behavior
is representative for the developer, we conducted a ”contex-
tualized” interview directly after each observation session.
We put special emphasis on understanding events and actions
that occurred during the observation.

The interview focused on exploring how and why ques-
tions like “Why did you debug?” or “How did you realize
that method Y is buggy?”. We conducted semi-structured,
exploratory interviews. We used prepared questions1, but
did not stick to them rigidly. We rather used the questions as
guidance to explore the subfields of program comprehension
we were interested in, i.e. strategies employed, information
sources, missing information, and tools used. At the start
of each interview, we gave a short definition of program
comprehension in order to focus the discussion. Minutes
were manually created one to two days after each interview.

3) Testing the Method: Before we observed programmers
in industry, we conducted a test session with a postgraduate
student and observed him during a development task using
a first version of our observation sheet and questions. The

1http://www.informatik.uni-bremen.de/st/pumba.php?site=interview

256

observation sheet turned out to be suitable, its use became
better with increasing experience of observers. However, the
questions had to be revised. First, we realized that we had
too many questions and dropped less important ones in order
to stick to our timeframe of 45 min. Second, we realized
that some questions target the same information and we
merged them, for instance, “Which steps are difficult when
understanding software?” and “Which problems occurred
during understanding software?”.

4) Evaluation: In order to analyze the results of obser-
vations and interviews we used two different approaches.

• We summarized each session by collecting interesting
observations, i.e. those that were not expected, occurred
in a similar way in other study sessions, or differed
among participants. We clustered these observations
by topic and compared similarities and differences in
the behavior of different participants with respect to a
specific topic.

• We collected all answers to a specific interview ques-
tion, summarized them, and compared the answers of
different participants.

The results of both evaluation approaches were iteratively
combined and incorporated in textual descriptions, which
can be found in Section III. The validity of a single result
is strengthened if it is both observed and reported.

5) Reliability Measures: To increase the reliability of our
findings, we employed the following measures [3]:

• Independent peer observations: To eliminate observer
bias, we report in this paper only on observations that
were independently reported at least in two different
sessions by two different observers.

• Peer debriefing: After each study day, every observer
discussed its observations and findings of that day with
another author. Discussing results helped in summariz-
ing important findings, relating results to results from
other sessions, and interpreting observations.

• Triangulation of data sources: Our study design has the
advantage that it produces two kinds of data sources:
observation protocols containing what observers saw
and interview transcripts containing what participants
told. Combining these triangulates between different
data sources and improves reliability.

• Participant checking: We sent a first draft of the findings
in Section III to two participants that were observed
earlier and asked them for feedback. Participant P1
agreed with 21 hypotheses, was not sure for Hypothesis
4 and 23. He disagreed with Hypothesis 21 which he
could not confirm by experience. Participant P2 agreed
with 18 hypotheses, was not sure for Hypothesis 4, 5,
7, 19, and 22, and disagreed with Hypothesis 23 which
he could not confirm by experience.

Table III
OBSERVATIONS WITH PARTICIPANT AND COMPANY COUNTS

Observation # P # C
Comprehension Strategies
(S1) Employ a recurring, structured comprehension
strategy depending on context

26 7

(S2) Follow a problem-solution-test work pattern 18 5
(S3) Interact with UI to test expected program behavior 17 5
(S4) Debug application to elicit runtime information 16 5
(S5) Clone to avoid comprehension and minimize effort 14 6
(S6) Identify starting point for comprehension and filter
irrelevant code based on experience

10 5

(S7) Establish and test hypotheses 9 5
(S8) Take notes to reflect mental model and record
knowledge

9 4

Information Sources
(I1) Source code is more trusted than documentation 21 6
(I2) Communication is preferred over documentation 17 5
(I3) Standards facilitate comprehension 12 6
(I4) Cryptic, meaningless names hamper comprehension 10 6
(I5) Rationale and intended usage is important but rare
information

10 5

(I6) Real usage scenarios are useful but rare 5 4
Tool Usage
(T1) Dedicated program comprehension tools are not used 28 7
(T2) Standalone tools are used in addition to IDEs 5 4
(T3) Compiler is used to elicit structural information 5 4
(T4) Tool features for comprehension are unknown 3 3

C. Participant Recruitment

Our participants had to work for a software development
company and spend most of their time coding (to make sure
to study software developers). We excluded other people,
especially students and university researchers, from the study
because we want to study industry practice. We also allowed
participants with different tasks, different project roles, dif-
ferent experience, different technology used and different
company size in order to explore program comprehension
as broad as possible and to improve external validity.

Table II gives an overview of all 28 participants. Five
participants work for companies located in Spain and the rest
for companies located in Germany. The column W. exp. rep-
resents how many years of work experience a participant
had. The role developer denotes that the participant mainly
implements new functionality. The role maintainer denotes
that the participant mainly fixes bugs. The column Fam. de-
notes whether a participant was familiar with the program
they are trying to comprehend during the observation.
Tec. exp. represents the experience with the technology used
in years. All participants worked in projects that used a
proprietary customized agile development process.

III. FINDINGS

We summarize the observation and interview answers,
formulate hypotheses summarizing the observations, and
relate our findings to the findings of similar studies. Table
III gives an overview of our findings and the number of
participants and companies that support each finding.

257

Table II
OVERVIEW OF PARTICIPANTS

ID Company W. exp. Project role Domain Fam. Technology Used Tec. exp. Task During Observation

P1 C1 (DE) 4.5 Developer,
Maintainer

Facility control Java, Netbeans 4.5 Application familiarization

P2 C2 (DE) 3 Technical
documenter

Fleet management PL/ SQL, Oracle SQL Developer 0.25 Technical documentation

P3 C3 (ES) 8 Manager,
Developer

Event management X Delphi, Delphi IDE (Client), Java,
Eclipse (Server)

6 Bug fixing

P4 C3 (ES) 8 Manager,
Developer

Event management X Delphi, Delphi IDE (Client), Java,
Eclipse (Server)

6 Feature implementation

P5 C4 (ES) 2 Developer Port management X Oracle DB, Java, Oracle Toad,
Eclipse, Tomcat

2 Bug fixing
Feature implementation

P6 C4 (ES) 1.5 Maintainer Port management X Oracle DB, Java, Oracle Toad,
Eclipse, Tomcat

1 Feature implementation
(2x)

P7 C4 (ES) 4.5 Developer,
Maintainer

Port management X Oracle DB, Java, Oracle Toad,
Eclipse

2.5 Porting a feature

P8 C5 (DE) 3 Developer,
Consultant

Automotive software X C, ASCET, SourceInsight 3 Application familiarization

P9 C5 (DE) 9 Developer Automotive software X C, NotPad ++ 9 Version comparison
P10 C5 (DE) 16 Researcher Automotive software X C, ASCET, NotePad++ 16 Version comparison
P11 C5 (DE) 6 Developer Automotive software X C, Eclipse 3 Code review
P12 C5 (DE) 8 Developer Automotive software X C, Eclipse, SourceInsight 8 Code review
P13 C5 (DE) 7 Developer Automotive software X C, Visual Studio 7 Feature implementation
P14 C5 (DE) 6 Developer,

Maintainer
Automotive software X C, XML, CodeWrigth Editor 3 Feature implementation

(2x)
P15 C6 (DE) 1.5 Developer Computer Aided Design X Python, Eclipse 1.5 Feature implementation

(3x)
P16 C6 (DE) 19 Developer Computer Aided Design X Python, Eclipse 3 Bug fixing
P17 C6 (DE) 5 Developer Product management X Python, SQLite, Toad 5 Code review
P18 C6 (DE) 7.5 Developer Databases X C, Python, XML, Vi 5 Feature implementation

Porting a feature
P19 C7 (DE) 3 Developer Content management X C#, Visual Studio 3 Bug fixing
P20 C7 (DE) 11 Developer Content management X VB, VB .NET, Visual Studio 8 Bug fixing
P21 C7 (DE) 11 Developer Content management X VB .NET, C#, Visual Studio 8 Bug fixing
P22 C7 (DE) 16 Developer Content management X Java, Tomcat, NetBeans 11 Feature implementation
P23 C7 (DE) 1.5 Developer Content management X Java, NetBeans 1.5 Feature implementation
P24 C7 (DE) 11 Developer Content management X Java, Eclipse 11 Feature implementation
P25 C7 (DE) 3 Developer Content management X VB .NET, SQL Server, Visual Studio 3 Bug fixing
P26 C7 (DE) 18 Developer Content management X VB, VB .NET, Visual Studio 18 Bug fixing
P27 C7 (DE) 8 Developer Content management X VB. NET, Visual Studio, Editor 4 Bug fixing
P28 C7 (DE) 10 Developer Content management X VB .NET, Visual Studio 5 Bug fixing

A. Comprehension Strategies
By comprehension strategy, we mean the overall approach

and activities performed to reach a certain comprehension
goal, e.g. debugging to determine why a Nullpointer ex-
ception occurs or asking colleagues to acquire a certain
information. We observed the following 8 strategies.

(S1) Employ a recurring, structured comprehension
strategy depending on context: We noticed that many
participants approached tasks using a recurring, structured
strategy. 26 participants confirmed in the interviews that
they follow such a strategy. But the strategies differed
among them. Sixteen participants argued that they start with
reading source code and locating the code where the change
should be performed. Three participants said that they start
with inspecting documentation or requirements. P1 reported
that his comprehension strategy depends on the type of
application: in case of a server application or library, he tests
possible calls and the corresponding behavior (a black box

approach) whereas in case of applications with a Graphical
User Interface (GUI) he identifies methods that are executed
as a consequence of button clicks (a white box approach).
The strategy used by Participant P7 depends on previous
knowledge. If he already knows an application, he runs it and
inspects source code. But, if he is completely unfamiliar with
an application, he either talks to a person with knowledge
about it or implements some dummy functionality to test the
application behavior. P3 reported to use a task independent,
high-level strategy by ensuring that code can be compiled
and run as a prerequisite for all other comprehension activ-
ities. We observed that participants used different strategies
for bug fixing (e.g. reproduce bug, locate cause, apply fix)
and feature implementation (e.g. understand behavior of
application, analyze similar code, copy and adapt code).
Hypothesis 1 Developers usually follow a recurring, struc-
tured comprehension strategy that varies with the type of

258

task, developer personality, the amount of previous knowl-
edge about the application and the type of application.

There is a distinction between what we describe as “recur-
ring, structured approach” and what Littman et al. describe
as "systematic and opportunistic strategies" [12]. What
Littmann et al describe as “systematic and opportunistic”
approach refers to reading code line by line (systematic)
or in a more arbitrary order. Our strategies are not limited
to the way developers read code but describe a whole
"workflow" (e.g. reading documentation, locating a bug,
applying changes). We did not observe whether the code
reading as a part of those strategies was systematic or
opportunistic. The strategies we observed were recurring and
depend on the context factors mentioned in Hypothesis 1.

(S2) Follow a problem-solution-test work pattern: We
observed that 18 participants followed a work pattern includ-
ing three steps: identifying the problem, implementing the
solution, and testing the solution. Each of these steps had a
different comprehension goal. The focus of the first step was
to understand what happened before a bug occurred and why
this causes the bug (in case of bug fixing) or to understand
application behavior (in case of feature implementation).
The focus of the second step was to understand how the
bug can be removed (bug fixing) or how the feature can be
implemented, e.g. which code has to be changed and which
code has to be added.

For example, P3 tried to fix a coloring bug in the UI.
He resumed this task because he could not finish it the day
before. P3 tried to identify the cause of the bug by debugging
the application and executing it with print statements (step
1). Despite several code modifications (step 2) and subse-
quent testing (step 3), P3 could not solve the problem during
our observation session. In contrast, P5 was able to complete
two tasks during our observation session and completed
two passes through the work pattern. The first task was
to fix a SQLException problem. P5 inspected the problem
by analyzing the SQLException trace and discovered that
two table attributes were missing in the database of the
production environment (step 1). As solution, P5 wrote a
SQL script creating those two missing attributes (step 2) and
tested it by running it on the local test system (step 3). The
second task was to add additional information to a view in
the GUI. P5 debugged the application in order to identify the
code location where to add new instructions (step 1), copied
an existing table structure, adapted it, added code to fill the
adapted structure (step 2), and tested the implementation by
restarting the application and inspecting the table in the GUI
(step 3).

Similarly, Boehm [1] observed that modifying software
generally involves three phases: understanding the existing
software, modifying the existing software, and revalidating
the modified software. Maalej and Happel [14] also found
that about 25% of developers describe their work by using
problem-solution phrases.

Hypothesis 2 For tasks including changing source code,
developers employ a work pattern with three steps: 1)
Identification of the problem (in case of bug fixing) or
identification of code locations as starting points (in case
of feature implementation), 2) searching for and applying a
solution, and 3) testing the correctness of the solution.

(S3) Interact with UI to test expected program be-
havior: 21 participants worked on applications that exhibit
a user interface (UI) and 17 of them used the UI to
comprehend the application or stated this in the interview. P1
inspected which code is triggered by a button click and used
this information as a starting point in exploration. P3 related
control flow to the user interface during debugging: “we only
passed two times in this loop because we have two categories
of events displayed in the user interface”. P2, P5, P17 and
P19-P28 interacted with the user interface (entered values in
text fields, expanded drop down lists, or clicked on buttons)
in order to familiarize with the application’s functionality
and test whether the application works as expected. P4
tested the correctness of application implementation and his
conceptualization of it by entering values in a UI form and
verifying that these values are stored in the database.
Hypothesis 3 Developers interact with the user interface of
the software to test if the application behaves as expected
and to find starting points for further inspection.

(S4) Debug application to elicit runtime information:
All 21 participants from companies C1-C4, C6 and C7 read
source code and executed the application. Sixteen of them
used the debugger to inspect the state of the application at
runtime. The participants from company C5 did not have
the possibility to execute or debug the application because
they can only access and compile parts of the software they
are working on as the overall system has to run on a special
hardware that is not available to single developers.

This finding matches with results of Murphy et al. [15]
who found that debuggers are frequently used by developers.
Hypothesis 4 Developers frequently debug the application
to acquire runtime information.

(S5) Clone to avoid comprehension and minimize effort:
We observed 14 participants reusing code or documentation
by cloning. To avoid breaking existing code, P3 copied
a piece of code and adapted it instead of refactoring the
original code. The fear of breaking originates from not
knowing all possible usages of the piece of code (“I do not
know if it is used otherwise”) and not being able to test all
possible usages after a modification to check the correctness
of the modification (“I can’t test everything later”).

P2 stated another reason for copying and adapting docu-
mentation: “copy documentation to have a uniform struc-
ture”, simplifying the use of the documentation and the
access of information needed during comprehension.

An interesting code reuse strategy was observed for
participant P7. The task was to re-implement an already

259

existing functionality from another customer-specific version
of the application. P7 copied big blocks of code containing
several methods and "deactivated" the whole copied code
by commenting it out. Then he looked at compiler warnings
that indicated that a certain method was not found by
the compiler. Following these warnings, P7 removed the
comments and "reactivated" the appropriate methods. P7
applied this strategy repeatedly until all compiler warnings
disappeared. Using this strategy, P7 traced which methods
in the copied code were really needed. With this strategy,
P7 did not try to understand how each method works.

Another reason reported by participants for cloning code
is to reuse an existing implementation and save effort
compared to writing code from scratch. Most participants
claimed that they clone code to save effort and only few
reported that they clone code to avoid comprehension.

This finding matches with the results of Singer et al. [22],
who reported that novice developers do not comprehend
system aspects that go beyond the needs of their current
tasks.
Hypothesis 5 Developers try to avoid comprehension by
cloning pieces of code if they cannot comprehend all possi-
ble consequences of changes.
Hypothesis 6 Developers prefer a unified documentation
structure to simplify finding information needed for com-
prehension.
Hypothesis 7 Developers usually want to get their tasks
done rather than comprehend software.

(S6) Identify starting point for comprehension and filter
irrelevant code based on experience: During the observa-
tions we noted that many participants had an idea where
to start inspecting the program behavior. When asked how
they choose these starting points, participants agreed that
they know from experience where to begin. For example,
P3 explained “if you know the application you know where
to touch the code”. Eight participants explained, that they
choose a specific starting point “because this is always the
starting point in all our systems” and most of them referred
to the application architecture as crucial information.
We observed that experience also influenced the recognition
of data structures and helped in the location of concepts.
P11, for example, realized very quickly that a specific feature
in the software was implemented as a state machine because
he knew this concept from other parts of the system.

We also observed that participants often decided whether
to take a closer look on a certain code fragment or not based
on experience. Participants P2, P9 and P10 ignored parts
of the source code, arguing e.g. that “this part implements
calculation, which is not important for my current task”.

This observation matches with results from Sillito et
al. [19] who found that developers minimize the amount
of code to read.
Hypothesis 8 Experience of developers plays an important
role in program comprehension activities and helps to iden-

tify starting points for further inspection and to filter out
code locations that are irrelevant for the current task.

(S7) Establish and test hypotheses: We observed that
participants comprehend code by asking and answering
questions or establishing hypotheses and testing them. Nine
participants verbalized such questions or hypotheses during
observations. For example, P1 asked questions like “Where
do Corba calls happen?” or “What do I have to change to
implement user profiles?”. Four participants (P11, P12, P14,
P15) asked themselves where certain values were set or used.
Participants P2 and P3 established hypotheses about the
application behavior and compared them to actual observed
behavior, reflected in statements like “I assume this method
fetches the maximum value” (P2), or “the problem should be
in method prepareItem” (P3), or “the values printed should
be all x ... [printed values differ from x] ... oh, they are
different” (P3).

This finding matches with results reported by Brooks [2],
Mayrhauser et al. [24], and Ko et al. [8]. According to
these authors, questions lead to informal hypotheses that are
verified by developers.
Hypothesis 9 Developers comprehend software by asking
and answering questions and establishing and testing hy-
potheses about application behavior.

(S8) Take notes to reflect mental model and record
knowledge: Nine participants took notes on a separate piece
of paper or used a text editor as a temporal memory during
comprehension activities. These notes varied from single
function names, mappings between ids and labels to complex
flow charts corresponding to the part of the application
studied. We also observed one participant writing down
how a specific module could be used and accessed. Three
participants drew flow charts. They started by writing down
a condition that they assumed to be the starting point.
During the next inspection, the participants refined the charts
by adding further conditions and incorporated additionally
acquired knowledge into them. P3 wrote down the method
name and parameters of a server call to be able to debug a
server call with the original parameters.

All participants started their tasks without using existing
notes. P9 stated that “notes are only important for the current
mental model” and participant P11 reported that notes “are
only for personal understanding” and are not archived or
used beyond the current task.
Hypothesis 10 Some developers use temporal notes as
comprehension support. This externalized knowledge is only
used personally. It is neither archived nor reused.

B. Information Sources

We made six main observations about information sources
needed during program comprehension, how knowledge was
documented and shared, and which information was missing
to developers.

260

(I1) Source code is more trusted than documentation:
21 participants reported that they get their main information
from source code and inline comments whereas only four
stated that documentation is their main source of informa-
tion. P2 verified the correctness of existing documentation
by inspecting source code in order to make sure that “a
ratio in the documentation is really a ratio”. P9 questioned
the trustfulness of documentation in general (“you cannot
trust the documentation”) and P5 reported that “technical
documentation covers only 10 % of the application”. The
lack of documentation was confirmed by P1: “source code
is documented sparsely”. P5 explained that the reason for
this phenomenon as follows: “Documentation costs much
time, usually more than actual implementation. That’s the
reason why people try to avoid documentation.”

This finding matches with the results of other researchers,
who reported that documentation is seldom kept up-to-date
[6], [10], [11]. Singer et al. [22] also reported that source
code is read frequently while documentation is not.
Hypothesis 11 Source code is considered a more credible
source of information than written documentation, mainly
because documentation is often non-existent or outdated.

(I2) Communication is preferred over documentation:
Seventeen participants reported that communication with
colleagues is a more important source of information than
written documentation. P5 reported that “only little is docu-
mented, most knowledge is in comments or experts’ heads”
and P1 employed a strategy to ask colleagues for information
in case of problems in components developed by them.
Participants from company C7 stated that communication is
the most important source of information as documentation
is rarely available. P4 and P7 compared the benefits of
writing documentation with explaining to colleagues orally.
According to them, an explanation can be tailored to the
information seeker by relevance or by previous experience,
whereas a written documentation can be re-read in case some
details were forgotten. P7 stated “I have the feeling that our
bosses want us to explain to people, not to document”. P15
and P17 stated that “due to the small size of the project team
it is much easier to go next door and ask a colleague than
searching for the information needed in the documentation”.

This result is consistent to the findings reported by LaToza
et al. [10], who emphasized the importance of people to gain
information compared to written documents.
Hypothesis 12 Communication with colleagues is a more
important source of information than written documentation
because written documentation is non-existent and some
developers prefer direct communication over writing doc-
umentation. The advantage of direct communication is that
answers can be tailored to the information seekers whereas
the advantage of written documentation it is reusable.

(I3) Standards facilitate comprehension: Twelve partic-
ipants agreed that the consistent use of naming conventions

and a common architecture simplify program comprehension
tasks considerably. P1 and P3 searched for starting points to
inspect the code by using the standard structure of an appli-
cation. P1 used web application resources such as the web
descriptor web.xml, while P3 used standard naming scheme
of Delphi UI triggers such as SHOW or CREATE methods.
P5, P6, and P7 reported that a standardized architecture helps
them to locate code that has to be changed for a bug fix
or a feature implementation. Further, P2 reported that most
of the functions he analyzed had the same structure (“filter
data, set global variables, calculation“) and he ignored those
parts of the structure that are not relevant for his current
task. Naming conventions played a central role for company
C5. The participants even used a self-developed translator
that transformed cryptic names of functions and variables
into a meaningful human readable form, which helped to
get a better understanding of the software. This finding is
consistent with the finding of Rajlich and Wilde [16], who
reported that “regularities in the design, and especially in the
naming of functions and data, may greatly facilitate concept
location”.
Hypothesis 13 Standardization – the consistent use of nam-
ing conventions and a common architecture – allows devel-
opers to become familiar with an application quickly and
makes program comprehension activities easier and faster.

(I4) Cryptic, meaningless names hamper comprehen-
sion: The issue of low quality names of variables, methods,
and constants was raised in the observations and interviews
by ten participants. P2 was angry when encountering cryptic
variable names like CT_AVG_AC or GT_CCMP several
times and had no idea what they meant. P6 explained that a
reason for using cryptic names is that database field names
were restricted to 5 characters and hence only abbreviations
could be used as names. P3 reported that confusing names
are due the lack of a mandatory coding style and the
mixture of English and Spanish names. Additionally, the
participant stressed the importance of semantic names of
trigger components like SHOW to identify source code with
a specific functionality. P5 explained that “well written code
uses semantic names” and “50 % of code is well written”.
During the interviews, two participants explicitly said that it
is very difficult to understand source code that is not properly
formatted according to style guides. Company C5 enforces
naming conventions that can be translated to semantic names
by a translator. Participants from C5 agreed that this helps to
understand the rationale behind the code. However, improper
use of naming conventions also led to misunderstandings.
P9, for example, assumed a different meaning of a function
due to its misleading name. He explained that “the function
name took me to the wrong direction. According to our
naming convention the name should have been different”.
Hypothesis 14 Cryptic, non-semantic names hamper under-
standing of a piece of code.

261

Hypothesis 15 Naming conventions can help to mitigate
this effect but if they are too complicated they can have
a negative effect.

(I5) Rationale and intended usage is important but
rare information: Participants were interested in information
about the “purpose and idea behind a class or method”
and “how it should be used”. P1 mentioned that rationale
gets lost and cannot be restored when it is not documented,
even for code written by the participant himself (“without
documentation I would forget quickly”). The results from the
observation were approved during the interview where ten
participants argued that understanding the rationale behind
the code is very exhausting. In contrast, we did not observe
a single participant documenting rationale for own code.

This finding supports the result of LaToza et al. [10] that
understanding the rationale behind code is a big problem for
developers.
Hypothesis 16 Knowledge about rationale of the imple-
mentor and intended ways of using a piece of code help to
comprehend code but this information is rarely documented.
Hypothesis 17 There is a gap between the interest of de-
velopers in this information and the lack of documenting it
for their own code.

(I6) Real usage scenarios are useful but rare: Five
participants reported the importance of knowledge about
how end users use the application as context information
for comprehension. P3 explained that “needs that are sup-
ported by the application” are an information necessary
to understand programs. P2 had a dedicated item in his
documentation scheme called “user goals”. He reported
that use cases and requirements of potential users is an
information that is missing to him (“I am not sure how
potential users will use the system or what their intentions
are”). P15 reported that it is often unclear how the end user
uses the application and that he has limited knowledge about
the application domain.
Hypothesis 18 The way in which end users use an appli-
cation is a helpful context information in program compre-
hension.
Hypothesis 19 In many cases this information is missing.

C. Tool Usage

We made four main observations about tool usage,
i.e. which tools were used and how they were employed
to understand software.

(T1) Dedicated program comprehension tools are not
used: Twenty two participants used an Integrated Develop-
ment Environment (IDE) to read source code and sixteen
participants used the debugger to inspect the state of the
application during its execution. But we did not observe any
usage of special program comprehension tools such as visu-
alization, concept location, or software metric tools. Some

participants from company C5 used SOURCEINSIGHT2 to
view source code but we did not observe them utilizing
the built-in program comprehension features. P3 reported
to use WIRESHARK3, a network packet analyzer, to inspect
network communication, while P4 reported to use SELE-
NIUM4, a macro recorder of user interactions, to simulate
user interactions for testing purposes.
Hypothesis 20 Industry developers do not use dedicated
program comprehension tools developed by the research
community.

(T2) Standalone tools are used in addition to IDEs:
During the observations we realized that even though 22
participants used an IDE to read and change source code,
five participants employed other tools to perform actions
that could also be done by the IDE. For example, P14
used the ECLIPSE IDE that supports full-text search but the
participant executed a search using GREP from the command
line. P14 argued that “it is much quicker and I am more
used to this kind of search”. P3 viewed a previous source
code version in NOTEPAD and the current version in DELPHI
because “it would be too difficult to open this also in DELPHI
and switch between the current and previous code versions”.

This finding is consistent with the results from LaToza et
al. [10], who reported on the use of standalone tools in addi-
tion to an IDE in a bug fixing scenario. Singer et al. [22] and
Maalej [13] also found that developers complain about loose
integration of tools, which might hinder comprehension as
information required is scattered across different tools.
Hypothesis 21 During comprehension tasks, IDE and spe-
cialized tools are used in parallel by developers, despite the
fact that the IDE provides similar features.

(T3) Compiler is used to elicit structural information:
Five participants used the compiler to elicit structural infor-
mation. P3 used the compiler to search for locations where
a specific constant is used by changing the name of that
constant in its definition and examining the locations of the
resulting compiler errors. P4 used the compiler to find out
where he inconsistently adapted a copied piece of code,
e.g. inconsistent changes of variable names. P7 used the
compiler extensively to check which methods of a copied
code block are necessary as described in finding S5. P15
and P18 used the compiler messages to find error locations.
Starting from the compiler message “variable x not defined”
they performed a full-text search for the code locations
where variable x is used.
Hypothesis 22 The compiler is used by some developers to
elicit structural information such as dependencies and usage
locations of code elements.

(T4) Tool features for comprehension are unknown: We
made an unexpected observation with P3. In order to find all

2http://www.sourceinsight.com/
3http://www.wireshark.org/
4http://seleniumhq.org/

262

code locations where a specific constant is used, P3 changed
the name of the constant in its definition and inspected
resulting compiler warnings. P3 was working in ECLIPSE
that provides the feature REFERENCES for retrieving such
a list of constant usage. When asked about the motivation
behind this behavior, P3 answered that he did not know
the ECLIPSE feature despite of 8 years of professional
experience and 6 years using ECLIPSE. P22 solved the same
problem by performing a full text search for a method name.
These observations match with results from Sillito et al. [19],
who reported that developers make inefficient use of tools.
Hypothesis 23 Developers do not know some standard fea-
tures of tools.

IV. DISCUSSION

We discuss the implications of our findings for re-
searchers, tool vendors, and practitioners and reflect on
limitations and threads to validity.

A. Implications
The fact that none of the participants used dedicated

program comprehension tools such as visualization, concept
location, or software metric tools reveals a gap between
program comprehension research and practice.

1) Implications for Researchers: In order to validate,
understand, and deal with the gap between research and
practice, researchers should investigate the scope of the gap,
reasons behind it, and align research efforts to the needs of
industry. Possible reasons behind the gap are a) research
results and their benefits being too abstract for industry, b)
lack of knowledge about available tools among practitioners,
c) fear of familiarization effort and lack or trust in new tools,
or d) that using new tools requires too much training for
practitioners.

2) Implications for Tool Vendors: Similar to researchers,
vendors of software development tools should investigate
the reasons behind the gap between research and practice,
carefully select which tools developed by the research com-
munity that provide benefits for program comprehension
tasks and incorporate them as features in their tools.

The observation that some developers do not know stan-
dard features such as the ECLIPSE feature REFERENCES (see
Hypothesis 23) emphasizes the need to educate developers
to use tools efficiently and to proactively inform them
about new features. We wonder: how many features can be
incorporated into a tool such as ECLIPSE before it becomes
to overwhelming for a developer to first comprehend its
features and then use them appropriately in program com-
prehension.

Moreover, insights about the work patterns of developers
from this and other studies (e.g. [15]) can be used to build
tools that are aligned to the workflow of developers. For
example a tool, that detects the current high-level activity of
developers from low-level actions, can be used to provide
only information that is relevant for the current problem [18].

3) Implications for Practitioners: In order to benefit from
research results on program comprehension, practitioners
should examine the results of the research community, assess
their usefulness, and ask tool vendors to incorporate them
in their tools.

As standardized coding style was reported to facilitate (see
Hypothesis 13) and cryptic names to hinder (see Hypothe-
sis 14) program comprehension, practitioners should think
about what kind of coding style they want to implement
in their organization if not yet done. If a coding style
already exists, it may be worth to analyze its impact on
comprehension.

The observation that communication is preferred over
documentation in many comprehension situations (see Hy-
pothesis 12) has two drawbacks. First, information might
get lost when experts leave the organization. Second, experts
frequently get interrupted from their tasks. Practitioners need
thus to assess this tradeoff when deciding about information
sources to use for program comprehension.

B. Limitations and Threats to Validity

There are several limitations to the internal and external
validity of our results. As for the internal validity, we are
aware that in 45 min., we can only observe a fraction of
developer’s work day. We might have missed certain types
of tasks, comprehension strategies, information sources, or
tools. However, we think that extending the observation time
would not fundamentally change the findings, due to the
variation of the tasks observed. First, these tasks were ran-
domly selected by the participants. We only constrained the
tasks to include program comprehension. Second, the tasks
observed were different in duration and nature. While few
subjects managed to complete two tasks in the observations
session, others did not manage to complete one task.

Another potential threat to the internal validity is that
observers might had assumptions and expectations and might
considered only clues affirming these expectations, while
ignoring clues indicating different unexpected behavior (ob-
server bias). In order to deal with this threat, we report in this
paper only on findings that were observed by two observers
independently from each other in two different sessions.
Similarly, participants might have behaved differently be-
cause they were observed. This threat cannot be eliminated
completely but we addressed it by assuring participants
complete anonymity and confidentiality. We also stressed
that there was no "right and wrong behavior" as we only
aimed at documenting the state of practice.

Finally, there might be misinterpretations of the think
aloud comments and interview answers due to insufficient
language skills. For 26 sessions, both participant and ob-
server were either native or proficient speakers. In two
sessions, a translator was present due to participant’s insuffi-
cient English skills. Keeping in mind our reliability measures

263

(i.e. the triangulation of data sources and the participant
checking), we think that the effect of this threat is minimal.

Our study was designed to have a strong degree of realism
rather than a high external validity. Because we did not
study a random sample that is fully representative of the
target population of software developers, it is difficult to
generalize our findings. In addition, we neglected other
interesting aspects such as time spent on single activities,
or communication behavior within a team.

We were unable to draw representative samples from
all developers of the companies involved. However, the
distribution of participants includes different company sizes,
different experiences, different application domains, differ-
ent programming languages, different roles, and different
countries – representing a wide range of potential partici-
pants. This give use some confidence that the results have a
medium degree of generalizability.

V. RELATED WORK

Singer et al. [22] empirically studied developer’s habits,
and tool usage during software development. LaToza et
al. [10] conducted a similar study focusing on software
maintenance. Both studies were hosted in a single company,
while our sample includes developers from various compa-
nies and domains.

Other researchers studied developer behavior during main-
tenance tasks and program comprehension activities. DeLine
et al. [4], Sillito et al. [19], Ko et al. [9], and Robillard
et al. [17] studied developer behavior while updating un-
familiar source code. These studies used an experimental
setting with a small number of participants from one or two
companies working on unfamiliar code. Von Mayrhauser
et al. [23], [24] also studied developer’s behavior during
maintenance tasks, focussing on cognitive processes and
mental models. Their results are complementary to ours,
as we focussed on other research questions: developer’s
externalized behavior and its rationale.

Other studies examined information needed to compre-
hend software. Sillito et al. [20], [21] examined what
information developers seek during software maintenance
tasks. Ko et al. [7] studied information needs in software
development in general. Both studies concentrated on infor-
mation needs formulated in form of questions asked and
answered during a programming task. We also observed
information needed focussing on the sources of information
and overall access and sharing approaches. These studies
observe developers from a single company.

Lethbridge et al. [11] and Forward and Lethbridge [6]
studied how developers use and maintain documentation.
We made similar observation without restricting our obser-
vations to software documentation but also comprehension
approaches and tool usage.

Other studies examined how developers use tools to ac-
complish maintenance tasks. Murphy et al. [15] studied how

programmers use the ECLIPSE IDE by analyzing the inter-
action data collected by instrumenting ECLIPSE. Maalej [13]
studied tool usage and problems developers face regarding
tool integration using interviews and online questionnaires.
These studies used different research methods and are thus
complementary to our study. We explicitly identified over-
laps between results of related studies and our study during
the description of our findings.

VI. CONCLUSION

In this study, we observed 28 developers from software in-
dustry to get insights into the state of the practice in program
comprehension. Some of our findings confirm observations
made by other researchers, others are new and surprising.
We showed that previous observations (cf. findings S2, S4,
S5, S6, S7, I1, I2, I3, I5, T2) are valid in different contexts.

One of our most interesting findings is that developers
put themselves in the role of end users whenever possible.
We observed developers inspecting the behavior visible in
user interfaces and comparing it to the expected behavior.
This strategy aims at understanding program behavior and
getting first hints for further program exploration. It presents
an alternative to reading source code and debugging.

Moreover, developers sometimes try to avoid compre-
hending programs. Instead, they clone source code and adapt
it to fulfill their current task. Cloning avoids comprehending
possible consequences of modifying code directly. Wherever
possible, developers seem to prefer strategies that avoid
comprehension, because of time and mental effort needed.
Program comprehension is rather considered as a necessary
step to accomplish different maintenance tasks than a goal
by itself. When software architecture and code has to be in-
vestigated, we found that standards as well as experience are
important facilitators to quickly familiarize with an unknown
program and find starting points for further investigation.

Most observed developers choose from a set of structured
comprehension strategies (e.g. follow a problem-solution-
test work pattern), depending on their work context. Thereby,
context constitutes of the type of task at hand, the type
of program to comprehend, previous knowledge about the
program, and the developer’s general experience.

Overall, we found that state of the art tools in program
comprehension are either unknown or rarely utilized. This
reveals a gap between the state of the art of program com-
prehension research and the state of practice in industry (at
least in observed companies). The next step is to investigate
the reasons behind this gap and to test the 23 hypotheses
resulting from our study to improve generalizability.

ACKNOWLEDGEMENTS

We are very grateful to all study participants. This work
was supported by the Deutsche Forschungsgemeinschaft
(grant KO 2342/3-1/BR 2906/1-1) and by the European
Commission (FastFix project, grant FP7-258109).

264

REFERENCES

[1] B. Boehm. Software engineering. IEEE Transactions on
Computers, C-25(12):1226–1241, 1976.

[2] R. E. Brooks. Towards a theory of the comprehension of
computer programs. International Journal of Man-Machine
Studies, 18(6):543–554, 1983.

[3] J. Creswell. Research design: Qualitative, quantitative, and
mixed methods approaches. Sage Publications, Inc., 2009.

[4] R. DeLine, A. Khella, M. Czerwinski, and G. Robertson. To-
wards understanding programs through wear-based filtering.
In Proceedings of the 2005 ACM Symposium on Software
Visualization, SoftVis’05, pages 183–192. ACM, 2005.

[5] R. Fjeldstad and W. Hamlen. Application program main-
tenance study: Report to our respondents. In GUIDE 48,
Philadelphia, PA, 1979.

[6] A. Forward and T. C. Lethbridge. The relevance of software
documentation, tools and technologies: A survey. In Proceed-
ings of the 2002 ACM Symposium on Document Engineering,
pages 26–33. ACM, 2002.

[7] A. J. Ko, R. DeLine, and G. Venolia. Information needs in
collocated software development teams. In Proceedings of
the 29th International Conference on Software Engineering,
ICSE’07, pages 344–353. IEEE Computer Society, 2007.

[8] A. J. Ko and B. A. Myers. Designing the whyline: A debug-
ging interface for asking questions about program behavior.
In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI’04, pages 151–158. ACM, 2004.

[9] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung. An
exploratory study of how developers seek, relate, and collect
relevant information during software maintenance tasks. IEEE
Transactions on Software Engineering, 32:971–987, 2006.

[10] T. D. LaToza, G. Venolia, and R. DeLine. Maintaining mental
models: A study of developer work habits. In Proceedings of
the 28th International Conference on Software Engineering,
ICSE’06, pages 492–501. ACM, 2006.

[11] T. C. Lethbridge, J. Singer, and A. Forward. How software
engineers use documentation: The state of the practice. IEEE
Software, 20(6):35–39, 2003.

[12] D. Littman, J. Pinto, S. Letovsky, and E. Soloway. Mental
models and software maintenance. Journal of Systems and
Software, 7(4):341–355, 1987.

[13] W. Maalej. Task-first or context-first? tool integration revis-
ited. In Proceedings of the 2009 IEEE/ACM International
Conference on Automated Software Engineering, ASE’09,
pages 344–355. IEEE Computer Society, 2009.

[14] W. Maalej and H.-J. Happel. Can development work describe
itself? In 7th IEEE International Working Conference on
Mining Software Repositories, MSR ’10., pages 191–200.
IEEE, 2010.

[15] G. C. Murphy, M. Kersten, and L. Findlater. How are java
software developers using the eclipse ide? IEEE Software,
23(4):76–83, 2006.

[16] V. Rajlich and N. Wilde. The role of concepts in program
comprehension. In Proceedings of the 10th International
Workshop on Program Comprehension, pages 271 – 278,
2002.

[17] M. Robillard, W. Coelho, and G. Murphy. How effective
developers investigate source code: An exploratory study.
IEEE Transactions on Software Engineering, 30(12):889–903,
2004.

[18] T. Roehm and W. Maalej. Automatically detecting developer
activities and problems in software development work: Nier
track. In Proceedings of the 34th International Conference
on Software Engineering, ICSE’12, 2012.

[19] J. Sillito, K. De Voider, B. Fisher, and G. Murphy. Managing
software change tasks: An exploratory study. In Proceedings
of the 2005 International Symposium on Empirical Software
Engineering, ISESE’05, page 10, 2005.

[20] J. Sillito, G. C. Murphy, and K. De Volder. Questions
programmers ask during software evolution tasks. In Proceed-
ings of the 14th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE’06, pages 23–34.
ACM, 2006.

[21] J. Sillito, G. C. Murphy, and K. D. Volder. Asking and
answering questions during a programming change task.
IEEE Transactions on Software Engineering, 34(4):434–451,
2008.

[22] J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil. An
examination of software engineering work practices. In Pro-
ceedings of the 1997 Conference of the Centre for Advanced
Studies on Collaborative Research, CASCON’97, page 21.
IBM Press, 1997.

[23] A. von Mayrhauser and A. M. Vans. Identification of dynamic
comprehension processes during large scale maintenance.
IEEE Transactions on Software Engineering, 22(6):424–437,
1996.

[24] A. von Mayrhauser, A. M. Vans, and S. Lang. Program
comprehension and enhancement of software. In Proceed-
ings of the IFIP World Computing Congress - Information
Technology and Knowledge Engineering, 1998.

265

