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ABSTRACT 
User interfaces and information systems have become 
increasingly social in recent years, aimed at supporting the 
decentralized, cooperative production and use of content. A 
theory that predicts the impact of interface and interaction 
designs on such factors as participation rates and 
knowledge discovery is likely to be useful. This paper 
reviews a variety of observed phenomena in social 
information foraging and sketches a framework extending 
Information Foraging Theory towards making predictions 
about the effects of diversity, interference, and cost-of-
effort on performance time, participation rates, and utility 
of discoveries. 

Author Keywords 
Social information foraging theory. 

ACM Classification Keywords 
H5.m. Information interfaces and presentation (e.g., HCI): 
Miscellaneous.  

INTRODUCTION 
At the end of World War II, the United States’ Director of 
Scientific Research and Development, Vannevar Bush, 
published an article entitled As we may think in the popular 
magazine Atlantic Monthly  [5]. The article was both 
reflective and visionary: The war had been won with the 
help of the coordinated efforts of scientists, and those 
resources were available to be applied to the development 
of new tools to extend the powers of the human mind 
through more facile command of recorded knowledge. As 
we may think presented seminal ideas about personal 
computing and hypermedia that inspired computer scientists 
to realize aspects of Bush’s vision. The problem that 
inspired Bush was intellectual overspecialization. To solve 
this problem, Bush envisioned a device he called the 
Memex that would allow scholars to forage through 
personal stores of multimedia documents, and to save 
traces of paths through content that could then be shared 

with other scholars as a way of communicating new 
findings. The Memex was envisioned as a tool that would 
increase the capacity of individuals to attend to greater 
spans of emerging knowledge, and would increase the 
cooperative information sharing that Bush viewed as 
necessary to improvements in scientific discovery, which he 
expected to result in increased benefits to society. Bush’s 
vision was not only to improve the information foraging 
ability of the individual user, but to also improve 
communication and collaboration. 

With the rise of the Internet, Web, Web 2.0 and mobile 
communication we are witnessing the emergence of a 
decentralized network of knowledge production, sharing, 
and use that realizes the spirit of Bush’s dream, if not the 
specifics. This paper is an attempt to sketch out a 
theoretical foundation for some phenomena that arise as the 
field of computer-human interaction shifts from concerns 
focused mainly on the solo user to concerns about the social 
phenomena that arise from many interacting users. This 
paper is an attempt to extend Information Foraging Theory 
[23] to predict the effects of diversity and social brokerage, 
the standing-on-the-shoulders-of-giants effect, the effects of 
social interference, and the role of user interface interaction 
costs. 

Information foraging theory [23] has mainly focused on 
information seeking by the solitary user. The discovery of 
new knowledge, innovations, or inventions, however, is 
almost universally the result of collective action. This paper 
(based on a chapter in [23]) presents a somewhat 
idiosyncratic review of models and findings in various 
fields that may provide the basis for the development of 
theories of foraging by collectives, whether constituted by 
formal organizational structures or informal networks. The 
theoretical sketch draws upon research in optimal foraging 
theory (especially [14]), library science, computational 
ecology, management science, and sociometrics. Across 
these disciplines one finds general results concerning the 
costs and benefits of cooperative information foraging, the 
effects of group diversity, and patterns of social structuring 
that are correlated with innovative discovery.  

This paper presents mathematical models that capture some 
basic elements of these results. The goal of the models, at 
this point, is not to capture all the details of social 
information foraging in all of their messy splendor. Rather, 
the hope is that the models, which are surely wrong, 
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provide some insights to the main factors and trade-offs that 
structure the signature phenomena of social information 
foraging. To paraphrase R.M. May [21]: Here mathematics 
is seen in its quintessence, no more, but no less, than a way 
of thinking clearly about the consequences of basic 
assumptions in comparison to key empirical facts.  

THE POWER OF COOPERATION 
Specialization is a natural consequence of too much public 
knowledge for the individual mind to comprehend. Social 
networks involved in knowledge discovery, such as 
scientific communities, typically self-organize into a 
cognitive division of labor, with divisions based on the 
deliberate exclusion of possibly relevant information [31]. 
Some knowledge discovery organizations, such as the U.S. 
intelligence agencies are formally (and technologically) 
organized into specialty areas. The worry is that knowledge 
specialization leads to situations in which all the 
information required to make an important discovery is in 
the available record somewhere, but it is distributed across 
specialization boundaries with no single set of eyes in a 
position to see it all and make sense of it. 

It is unlikely that we can estimate the number of discoveries 
that are latent in the public domain because of 
overspecialization. This unrealized potential, however, has 
received considerable attention in the information retrieval 
and library sciences, where it is known as the undiscovered 
public knowledge problem [29, 30]. We may characterize 
public knowledge [30] by making use of the knowledge 
level perspective [22]. Public knowledge is that which is 
directly recorded in publications, plus the implications of 
that knowledge (i.e., the implicative closure of recorded 
knowledge). The problem is that some of the implied 
knowledge may be undiscovered. These implications may 
include hidden refutations, hidden cumulative strength of 
individually weak studies, or other hidden links in the logic 
of discovery. 

Overspecialization may lead to a failure for any one mind to 
grasp and connect all the dots. Information sharing is 
usually recognized as a strategy for extending the grasp of 
the solitary mind across specializations, to reduce the risk 
of failing to make discoveries implicit in the existing 
literature.  To the extent that individual members of a core 
specialty can devote some effort to exploring related 
peripheral specialties, and sharing possible leads with 
others, then one might expect the group to perform more 
effectively. 

Pirolli and Card [24] describe a business intelligence 
agency whose analysts were tasked to write monthly 
newsletters about core areas such as computer science or 
materials science. The main purpose of those newsletters 
was to identify new important science and technology 
trends. The organization received about 600 magazines, 
trade publications, and journals each month, and each 
analyst was responsible for scanning about 50 of these 
publications (an estimated 500 articles per month). In 

addition to culling material for their own newsletters, 
analysts would also notice articles pertinent to the 
specialties of other analysts, and would have such articles 
copied and routed to the appropriate specialist. An analyst 
would typically receive about 6 – 12 relevant articles per 
month from other analysts, at very little cost. The general 
belief of the analysts was that such cooperation enhanced 
the individuals’ search capabilities, and reduced the risk of 
missing something relevant to a specialty area that had 
emerged in a non-specialty publication. Below, I discuss a 
more thorough study by Sandstrom [26] concerning 
information foraging by an informal network of scientists 
that exhibits a similar, though more intricate, pattern of 
information sharing. 

SOCIAL CAPITAL OF DIVERSITY AND BROKERAGE 
Cooperation may yield more benefits than simply making 
information search more parallel and making it less prone 
to failure. Membership in a group provides actual or 
potential resources that can be utilized or mobilized to 
achieve individual goals. This is known as social capital [2, 
25], and much research has focused on determining what 
aspects of social structure provide such capital. Exposure to 
a greater diversity of knowledge, hence more novel ideas as 
a function of the time cost invested in information foraging, 
is another potential benefit of cooperation. Below, I 
summarize research on the effects of group diversity on 
cooperative information foraging, as well as the theory that 
people who provide brokerage of ideas across social 
clusters are often in position to make valuable novel 
discoveries. Since scientists (and many others who do 
knowledge discovery) are rewarded according to the 
novelty and value of their discoveries, we might expect 
individual group members to try to arrange themselves to 
be in positions that broker knowledge from peripheral fields 
to the group’s core specialty field. One question that arises 
is why groups do not grow infinitely large (if cooperation 
and group size produces positive rewards). Below I discuss 
forces that may be involved in producing groups of stable 
sizes.  

INFORMATION FORAGING BY NETWORKS OF 
SCHOLARS 
Sandstrom [26] has studied information foraging and 
scholarly communication among a group of scientists in the 
field of behavioral ecology. Sandstrom’s research combined 
a bibliometric approach with structured interviews. 
Sandstrom [26] first developed a spatial representation of 
scholarly publications in behavioral ecology, then had 
individual researchers in the community identify what they 
considered to be their core specialty vs peripheral 
specialties. Additional data were used to distinguish 
foraging strategies associated with the core vs periphery, 
and to suggest the costs and benefits of cooperation and the 
spanning of specialty literatures. 

Sandstom [26] performed an author cocitation analysis to 
understand the intellectual structure and scholarly 
communication patterns of 63 authors selected from the 
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behavioral ecology literature for 1988-1995. A 
multidimensional scaling analysis provided a visualization 
that could be interpreted as different subfields of authors 
arranged spatially in a 2D semantic pace, which is 
presented schematically in Figure 1. Sandstorm identified 
the center of this semantic space as the core of the field, 
with other, related fields arranged around the periphery. A 
sizable number (27 out of 55) authors contributed to more 
than one research area. As discussed below, these authors 
could be viewed as brokers of knowledge from one field to 
another. 

Sandstrom [26] also asked five experts to answer questions 
about their information foraging strategies [using the 
information seeking strategies defined in, 13] for literature 
in the own core field and peripheral fields. Socially 
mediated discovery tended to be the source of core 
literature for the experts, whereas solitary foraging tended 
to be the source of peripheral literature. Specifically, 
recommendations from colleagues, papers sent for 
prepublication reviews, and reprints sent by other authors 
and editors accounted for 30% of experts’ referenced items. 
Of these items, 69% were identified as belonging to their 
core field. Solitary foraging, involving reading, following 
references (citation chaining), browsing, monitoring, or 
deliberate search accounted for 48% of experts referenced 
items. Of these, 61% were identified as belonging to 
peripheral fields. Communication in the core zone of this 
scientific field tends to occur through more social means, 
and more towards the prepublication stages, whereas 
foraging interactions in the peripheral zones tends to 
involve more solitary or formal mechanisms, and more 
towards the postpublication stages. Low-cost information 
foraging behaviors are associated with core zones, and 
high-cost information foraging behaviors are associated 
with peripheral zones. 

EFFECTS OF DIVERSITY AND THE BROKERAGE OF 
STRUCTURAL HOLES IN SOCIAL NETWORKS 
Homogeneity of opinion, viewpoint, and information 
resources among a group of information foragers is likely to 
produce redundancy in what they find and how they 
interpret those findings. We might expect that groups of 
cooperative information foragers will be more effective if 
constituted by individuals with some degree of diversity. 
Individual foragers, who are positioned in social networks 
such that they broker information and ideas across groups, 
might be exposed to a greater diversity of information 
themselves, and be a conduit to greater diversity for their 
colleagues. 

Organization and management studies [12] suggest that 
effective work groups are ones that share information and 
know-how with external members, and that effectiveness is 
improved by structural diversity of the group. Structural 
diversity is variability in features of the group that expose 
members to different sources of task information, know-
how, and feedback. Such features include geographic 
locations, functional assignments, number of mangers to 
whom members report, and number of business units 
associated with the group. Cummins [12] studied 182 work 
groups in a Fortune 500 telecommunications firm and found 
that work group performance (as rated by senior executives) 
was significantly correlated with an interaction of structural 
diversity factors with knowledge sharing factors. 

The findings of Cummings [12] are consistent with the 
theory of social structural holes (structural holes theory) 
proposed by Burt [4]. Structural hole theory is grounded in 
the analysis of social networks as revealed, for instance, by 
sociograms such as Figure 2 that capture information flow. 
The nodes in Figure 2 represent people or aggregate groups 
of people and the links represent information flow.  
Typically, such social networks of information flow will 
contain densely connected clusters. The sparse linkages 
between such clusters constitute structural holes. People 
who bridge such structural holes have an advantage of 
exposure to greater diversity of information and know-how, 
and brokerage across structural holes becomes a form of 
social capital that translates into the discovery of greater 
amounts of useful, productive knowledge. The node at the 
center of Figure 2 represents an individual X who belong to 
three separate densely connected clusters of individuals. 

 
Figure 1. Schematic summary of the map of the field of 

behavioral ecology produced by a 2-D multidimensional scaling 
solution of an author cocitation analysis in Sandstrom [26]. 

Clusters of related authors were found to be arranged around 
the semantic core of the field, and many had publications in 

peripheral fields. 

 

 
Figure 2.  Schematic summary of Burt’s [4] notion of network 

constraint. Sociometric analysis of social networks can be 
used to reveal individuals in brokerage positions between 

densely connected network clusters. 
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Individual X is better positioned to gain from the social 
capital of brokerage across structural holes between those 
clusters of individual and is positioned to introduce greater 
diversity into groups. As Burt [4] summarized: 

Given greater homogeneity within than between groups, 
people whose networks bridge the structural holes between 
groups have earlier access to a broader diversity of 
information and have experience in translating information 
across groups. This is the social capital of 
brokerage…People whose networks bridge the structural 
holes between groups have an advantage in detecting and 
developing rewarding opportunities. Information arbitrage 
is their advantage. They are able to see early, see more 
broadly, and translate information across groups. Like 
over-the-horizon radar in an airplane, or an MRI in a 
medical procedure, brokerage across the structural holes 
between groups provides a vision of options otherwise 
unseen. 

One of the exciting prospects for the study of social 
information foraging is the explosion of online data relevant 
to finding and measuring social networks using on-line 
resources. For instance, it appears that e-mail flow and Web 
links among personal home pages provide data that can be 
used to accurately construct social networks [18] and to 
study information flow. 

A TEST OF THE RELATIONSHIP OF BROKERAGE TO 
INNOVATION AND INCENTIVES 
Two important empirical questions arising from structural 
holes theory concern whether in fact (a) good ideas arise 
from the social capital of brokerage and (b) whether 
individuals are incented to work their way into brokerage 
positions. To answer these questions, Burt [4] studied 673 
managers in the supply chain of a large American 
electronics company. Burt constructed a social network 
using a standard survey method.  

To assess the quality of ideas, Burt conducted a survey in 
which managers were asked to generate ideas that would 
improve the company’s supply chain management. These 
ideas were submitted to two senior managers who were 
asked to evaluate the value of the generated ideas. The 
evaluation. Burt also measured the network constraint of 
individuals, which is an index of the investments (e.g., time, 
effort, resources) of a person in direct and indirect social 

relationships. Low network constraint is associated with 
brokerage across structural holes (as in Figure 2). The 
hypothesis was that individuals in brokerage positions (low 
network constraint) would generate more valuable ideas. 
Burt [4] found a relationship between network constraint 
(brokerage) of individuals the value of ideas they generated 
found a relationship that is captured graphically in Figure 3.  
Burt [4] also found that network constraint predicted extra 
salary rewards for individuals: Overall, managers who 
discussed issues with managers in other groups were not 
only better paid, but were also likely to receive more 
positive job evaluations and to be promoted. 

Burt’s results suggest that brokerage across social network 
clusters is associated with higher valued ideas and greater 
rewards (Burt presents many other data analyses that 
support these conclusions). One may wonder, however, 
why social networks do not evolve such that the network 
constraint is uniform throughout, for all people, given that 
brokerage (low network constraint) appears to be 
individually rewarding. One possibility is that extra-group 
cooperation may be substantially more resource intensive 
and risky than intra-group cooperation, and people vary in 
their ability to create and maintain extra-group cooperation. 

The notion that brokerage across groups is important to 
success is echoed in many other domains. It seems plausible 
that the scientists studied by Sandstrom [26], in which each 
scientist spans the core literature of the field in addition to 
idiosyncratic peripheral areas, might arise from an incentive 
structure that rewards brokerage of structural holes in the 
flow of information, know-how, and ideas. 

A BASIC MODEL OF SOCIAL INFORMATION FORAGING 
I have presented evidence that indicates that information 
foragers, typified by scientists, engage in social exchanges 
of information, and appear to arrange themselves such that 
they bridge across content areas and informal social 
networks. Such arrangements may be expected to expose 
the individual to a greater diversity of hints about where to 
focus their foraging and sense making efforts. Research in 
sociology and management science indicates that the 
exposure to diversity that arises from bridging social 
structural holes is associated with innovation and greater 
individual rewards. One key assumption made here, is that 
many of these phenomena will be observed again in the 
emergent mobile and Web 2.0 worlds. 

In this section, I draw upon work in optimal foraging theory 
and computational ecology to develop a very simple basic 
model of the costs and benefits of cooperative information 
foraging. Diversity among information foragers is a critical 
variable in this model. At the end of this section I discuss 
the issue of group size.  

The basic social information foraging model (basic SIF 
model) derives from the quantitative theory of cooperative 
problem solving developed by Clearwater, Hogg, and 
Huberman [10]. Many extensions of this model have been 
developed and tested in computational ecology [e.g., 11, 15, 

 
Figure 3.  Schematic summary of Burt’s [4] analysis of the value 

of ideas generated by managers as a function of their network 
constraint measure. 
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19], so it is likely that the basic SIF model can be refined to 
meet many alternative constraints and assumptions. The 
work of Clearwater et al. [11] focused mostly on the 
analysis of the benefits of cooperative search processes. 
The basic SIF model incorporates some simple general 
assumptions about the nature of interference costs that arise 
in cooperation based on the computational ecology studies 
of group foraging in Seth [27]. Finally, the basic SIF model 
is cast in the form of the group foraging models developed 
in Clark and Mangel [9], which can be used to understand 
the relation between the size of a group and the individual 
rewards of cooperation, and which can also be used to 
understand why the expected size of groups will tend to be 
larger than optimal 

Basic Search Assumptions 
The basic SIF model assumes a heuristic process of search 
for useful knowledge in a space of discrete patches of 
information. It is assumed that a patch of information will 
yield some amount of utility for one or more foragers. To 
relate this heuristic search process to time, t, it is assumed 
that the number of processing steps required to find useful 
patches of information is large, the processing steps occur 
as a Poisson process, with each step occurring at rate λs 
steps per unit of time. The information environment can be 
characterized by the expected number of steps, T, required 
to find the next useful patch of information by random 
search process (i.e., with no heuristic involved and no 
cooperation). For this unguided, non-cooperative search 
process, the probability, p, of encountering a valuable 
information patch is, 

€ 

p = 1/T , (1) 
and, because of the Poisson process assumptions, the 
probability density function for encountering a valuable 
information patch as a function of time is 

€ 

PFind (t) = λs p e
−λs p t .. (2) 

The expected time to find a patch will be 

€ 

tPatch = t PFind (t)0

∞

∫ dt , (3) 

which is 

€ 

tPatch =
1

λs p

=
T
λs

. (4) 

Heuristics and Hints 
The search heuristic of the individual information forager, i, 
can be characterized by the proportion, hi, of remaining 
search steps that are eliminated [10, 17]. A heuristic of hi = 
0 is perfect and a heuristic of hi = 1 moves the forager no 
closer or farther from finding a useful information patch. 
The number of steps required to find a useful information 
patch will be hi T. The average time to find a patch for the 

heuristically guided, non-cooperating information forager 
will be, 

€ 

tPatch =
hi T
λs

. (5) 

The basic SIF model assumes that heuristic hints are 
exchanged in cooperative information foraging regarding 
the likely location of useful information patches (for 
instance, as was observed to occur among analysts in the 
business intelligence agency discussed above). Another 
example of hints are the social tags in systems such as 
delicious.com. Shared tags provide navigation paths and 
ontological organization to available content and it seems to 
be assumed that sharing tags improves individual 
sensemaking and foraging. 

Hints from cooperating information foragers may be 
characterized by the proportion, hji, of remaining search 
steps that are eliminated by the jth distinct hint received by 
information forager i.  Hints may vary in the validity of the 
search information conveyed, may vary in how they are 
interpreted by the information forager who receives them, 
and may vary in effectiveness depending on when they are 
exchanged in the search process. For instance, a good hint 
received late or not utilized will have a smaller effect than 
the same hint utilized early in search process. Similarly, to 
the extent that hints may contain redundant (correlated) 
search information, the effectiveness of hints will depend 
on what hints have already been processed. The hji should 
be interpreted as the distinct or independent heuristic 
effectiveness of a given hint given these conditions. We 
might also expect that as hints continue to arrive, they 
eventually repeat earlier information, and consequently 
yield no additional heuristic value in further reducing the 
search space. This is modeled simply by assuming that 
there is some maximum number of distinct effective hints, 
H. The expected number of steps required to find a useful 
information patch is defined to be, 

€ 

k = hi h ji
j=1

H

∏ T . (6) 

The average time to find a patch for a heuristically guided 
cooperating information forager will be, 

€ 

tPatch =

hi h ji
j=1

H

∏ T

λs
. (7) 

Huberman [17] presents a derivation of the law—that I 
repeat here—that relates the diversity of effective hints to 
the distribution of number of steps required to successfully 
complete a search. Taking the logarithms of the effective 
values of the hints of a forager one gets, 

  

€ 

ln h ji
j=1

H

∏
 

 

 
 

 

 

 
 

= ln h1i( ) + ln h2i( ) ++ ln hHi( ) . (8) 
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If the individual distributions of each of terms on the right 
side of Equation 8 have finite variance, and the number of 
hints is large, then the Central Limit Theorem applies and 
the logarithms of the hints, ln(hji),  will be normally 
distributed with mean µ and variance σ2. Therefore, the 
distribution of the hji themselves will follow a lognormal 
distribution, which has a probability density function 

€ 

Λ µ,σ , x( ) =
1

xσ 2π
e

− (ln x−µ )2

2σ 2 , (9) 

and an expected value 

€ 

E h ji | µ,σ[ ] = e
µ +

σ 2

2  (10) 

with variance 

€ 

var h ji | µ,σ[ ] = eσ
2
−1( )

2
e2µ +σ 2

. (11) 

The properties of the normal distribution imply that a 
sample of size H of the logarithms of the independent hint 
values in Equation 8 will have a mean H µ and variance H 
σ2.  

The probability density function for finding valuable 
information patch can be characterized as a lognormal 
distribution, 

€ 

PFind (t) ≈ Λ Hµ + ln hiT
λs
, Hσ , t

 

 
 

 

 
 , 

 (12) 
and the rate of finding valuable information patches can be 
characterized as a function, λ(H), of the diversity of hints, 

€ 

λ (H ) ≈ 1

E Hµ + ln hiT
λs
, Hσ

 

 
 

 

 
 

. (13) 

The average time to find a valuable information patch is 

€ 

tPatch (H ) ≈
1

λ (H )
. (14) 

Diversity Increases the Likelihood of Discovery 
Figure 4 illustrates the prediction of the model with respect 
to the impact of cooperative information processing on 
increasing the likelihood that more useful information will 
be discovered sooner. One can see a basic lognormal 
distribution of performance times that shifts downwards as 
more useful hints are exchanged among participants in a 
cooperative. 

Cooperation Increases the Likelihood of High-Value 
Discoveries 
As discussed in greater detail in Huberman [17], the 
lognormal distribution of performance times makes 
interesting predictions about productivity of a cooperative 
group with respect to high-utility search results (see Figure 
5). If one assumes that the various states of a search space 
have a binomial distribution of utilities, then, assuming a 
mildly effective search heuristic, the search performed by 
non-cooperating searchers will return a distribution of result 
values shown in Figure 5. Increasing cooperation will shift 
that distribution to a lognormal, and will especially increase 
the likelihood of search results at the higher end of the 
utility spectrum. In a sense this accounts for the “standing-
on-the-shoulders-of-giants” effect that is frequently 
observed where an individual with an average amount of 
smarts benefits from the cooperation of others in making a 
better-than-average discovery. 

Optimal Group Size, Interference Effects, and 
Equilibrium Group Size 
Many species, besides humans, forage in groups. Flocks of 
birds are perhaps the most obvious example of group 
foraging. One general explanation for the evolutionary 
advantage of group foraging is that it may lead to improved 
use of information about food sources in scarce, patchy 
environments [8, 9].  Although there may be positive 
effects of foraging in a group, foraging groups do not 
become arbitrarily large, suggesting that there may be some 
form of interference costs (e.g., intra-group competition) 
that at some point outweighs the advantages of further 
increments in the size of groups. 

 
Figure 4. Probability density function for finding useful 

information at time t. As diversity increases from H = 1 to H = 
10 it becomes more likely that useful information will be found 

sooner. The illustration assumes T = 10000, λ s = 1, hi = .5, µ  = -1, 
and σ  = 1. 

 

 
Figure 5. Increasing cooperation alters the probability 

distribution of achieving search results of different values. 
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It has been found empirically [16] and in computational 
modeling [27] that there is often a power-law relationship 
between the number of foragers, n, in a patch and the rate of 

consumption intake by each forager. To capture this 
mathematically one might assume that the individual 
forager’s  time to process an information patch in a group 
of n foragers is 

€ 

τ (n) = a nc  (15) 
where 0 < c < 1 is a rate parameter, and a is the time to 
forage for a patch when n = 1.  

We may assume a model in which an information patch has 
some finite total amount of value, G, where the expected 
gain for each of the n agents in the patch is G/n. This might 
characterize the case in which there are a finite number of 
discoveries to be made in a domain, and once a particular 
discovery is made it is of has no additional value to the next 
forager (as happens in scientific publication, where authors 
gain no reputation for repeating the discoveries of others). 
This is admittedly a strong assumption that does not apply 
to all group foraging situations. The expected time for n 
agents to find a valuable information patch will be 
tPatch(H)/n, or equivalently 1/[n λ(H)]. When n agents forage 
simultaneously, the patch will be exhausted in τ(n)/n time 
units. We may now cast the basic the basic SIF model as a 
variation of a conventional foraging models [see also, 9]. 
The rate of gain, for the individual member of the group, is 

€ 

R n,H( ) =
λ (n)G

1+ λ (H ) +τ (n)
 (16) 

 

Clark and Mangel [9] discuss the relationship of 
interference effects to optimal and equilibrium group size. 
The solitary forager should choose to join a group if the 
expected returns for group foraging are greater than 
foraging alone, i.e., 

€ 

R(n,H ) > R(1,1) . (17) 
If there is an interference cost function of the form in 
Equation 15, then we may obtain peaked rate of gain 
functions such as the one illustrated in Figure 6. 

Figure 6 can also be used to discuss why the equilibrium 
group size, , may be greater than the optimum group size, 
n*. Suppose solitary foragers have joined a group until it 
has the optimum size n*. Solitary foragers should continue 
to join the group so long as the rate of return for group 
foraging is still above the rate of return for solitary 
foraging, as stated in Equation 17. Members of the group 
may see their individual rates of return diminish from the 
optimum as new members join the group, but remaining in 
the group is still better than solo foraging. Consequently, 
individuals will join the group until the addition of new 
members makes the individual rate of return less than 
solitary foraging. Consequently, when R(n, H) is peaked, as 
in Figure 6, we may expect the equilibrium size to be  >  
n*.  

One can raise the question as to the plausibility of 
cooperative interference effects in information foraging. 
One example of this [7] is the apparent decrease in social 
tag effectiveness that seems to occur as the number of tags 
(and presumably taggers) grows. More specifically, it 
appears that a general phenomena across social tagging 
sites (see Figure 7 for the delicious.com data) that the 
mutual information between tags and documents decreases 
over time, as participation and tagging increase. This means 
that each individual tag is less effective (has less 
information) over time. 

Another illustration of the growing interference appears to 
occur in Wikipedia [20]. Figure 8 shows how the proportion 
of effort devoted to actually producing article content has 
declined from about 95% to less than 65% over time. 

One can ask whether these cooperative interference effects 
have any impact on participation rates, and such direct 
studies remain to be done. However, it is interesting that the 
number of editors actively contributing to Wikipedia has 

 
Figure 6. The individual rate of gain, R(n, H) may have a 

peaked form when interference costs are included. It is assumed 
that G = 10, τ(n) = 100 n.9, n = H. The dashed horizontal line 

indicates the rate of return for the solitary forager R(1,1). The 
optimum size of the group is n* = 7, whereas the equilibrium 

size of the group is = 45. 

 

 
Figure 7. The mutual information I(tag, doc) has been observed 

to decrease over time at delicious.com. From [7]. 
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apparently plateaued (see Figure 9), and this effect can be 
observed for pages created recently as well as those created 
some time ago. 

Reducing Interference Costs is Predicted to Increase 
Participation 
One implication of the model presented graphically in 
Figure 6 is that any changes to the technology or policies 
that reduce the impact of having to deal with others should 
increase the overall participation rates. This effect is 
summarized in Figure 10.  Reducing the costs of 
cooperation extends the tail of the rate of returns curve, 
which also extends the point at which it crosses the solo 
foraging threshold. Consequently the equilibrium group 
size is predicted to increase. 

Decreasing the Cost-of-Effort of a User Interface is 
Predicted to Increase Production and Participation 
In many social Web applications, such as social tagging or 
Wikipedia, there are interaction costs associated with 
producing and sharing information products (e.g., tags; 
Wikipedia content). In many situations, information 
foraging theory predicts that productivity rates should 
increase, and time allocations decrease, as the cost-of-effort 
associated with producing knowledge with the user 
interface is decreased. 

The information patch model [23] can extended to model 
tag production. One can assume a simple characterization 
of the tag producer’s task as involving a trade-off between 
reading + interaction time  vs tag production time.  In the 
case of the tagging model, one can assume that the user’s 
tagging activity around an individual article constitutes a 
“patch” of productive activity of some value to the user. 

Imagine an idealized user who navigates the Web and reads 
articles. This idealized user iteratively navigates to a page, 
reads it, and moves onto the next. Now assume that this 
idealized user is also engaged in tagging the articles that 
were read. For each Web page, the user engages in a set of 
micro-tasks around the addition of tags (e.g., generating the 
tag from memory or from the just-read text and somehow 
entering it into a tagging system). So this idealized user’s 
time can be divided into time devoted to (a) interaction 
(navigation) plus reading and (b) tag generation. On each 
article, the user spends some amount of time, on average, 
engaged in tag generation activities, and this is called the 
average within-patch time, tW.  The user also spends some 
amount of time, on average, navigating to the article and 
reading it, and this is called the average between-patch 
time, tB. 

This tagging-patch model assumes that tag production on a 
particular article produces diminishing returns as a function 
of time. In other words, on average, as time progresses, the 
user generates tags at ever-diminishing rate. The cumulative 
production of tags on an average article may be 
characterized by a gain function, g(tw).The overall average 
rate of gain from tag production is 

€ 

R =
G

TB +TW
 (18) 

where G is the sum of all the gains from all tagging, TB is 
the total between-patch time (reading and interaction time 
in the current case) and TW is the total within-patch time 
(tagging in this case). Under some strong but relatively 

 
Figure 8. The proportion of total editing effort going to 

article pages has declined over time, as the Wikipedia user 
base increased. From [20]. 

 
Figure 9. The number of editors contributing per week to 

Wikipedia. 

 

 
Figure 10. Reducing the costs of cooperation extends the tail of 
the rate of returns curve, which also extends the point at which 

it crosses the solo foraging threshold. Consequently the 
equilibrium group size is predicted to increase. 
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general assumptions [6, 23] the optimal time allocation to 
spend tagging is tW

*: 

R = g’(tW
*) (19) 

where g’ is the marginal rate of (within-patch) tag 
production. Equation 18 captures the rule: Continue tag 
production until the marginal rate of gain for continued 
tagging drops below the overall rate of gain R.  

Figure 11 presents a graphical representation of this model 
familiar in optimal foraging theory [28]. Between-patch 
time is plotted horizontally from the origin to the left and 
within-patch time is plotted form the origin to the right. The 
curve g1 represents a hypothetical diminishing returns 
function for tag production. A line plotted from the 
intercept tB to a point tangent to g1 will have a slope equal 
to the overall average rate of gain from tag production R, 
and the point of tangency to g1 will be g1(tW

*), thus giving 
us the optimal average time tW

*
 to allocate to tagging. 

Figure 11 also includes another gain function, g2 that 
represents the effects of lower time cost associated with 
producing tags. Going through the same graphical solution 
of plotting a tangent line to g2, one can see that the optimal 
time allocation to tagging is reduced while increasing the 
overall rate of gain R and increasing the number of tags 
produced. 

The information patch model predicts that lowering the 
time cost of tag production will increase the number of tags 
produced per document by individuals while decreasing the 
amount of time spent tagging. This is also a basic 
assumption of Benkler [1]. 

Figure 12 shows an application of the information patch 
model to data collected in an experiment conducted in our 
lab contrasting a lower cost-of-effort tagging technique 
called Click2Tag [3] against a more generally used type-to-
tag technique found in such systems as delicious.com. 

Although not a perfect instantiation of the model in Figure 
11, it is a very close approximation to the observed 
relations. 

GENERAL DISCUSSION 
Like the conventional foraging models presented in Pirolli 
[23] the basic SIF model is surely wrong. However, it 
serves as a tool to reason generally about several aspects of 
the power of cooperation and the social capital that is 
relevant to finding information.  The model suggests that so 
long as the diversity of agents increases with group size, 
then the size of a group increases the overall power of 
cooperative discovery. As individual foragers increase the 
diversity of their cooperating contacts they will improve in 
performance. This provides a mathematical rationale for the 
idea that brokerage positions in social networks provide 
social capital. The model also provides a rationale for the 
observed lognormal distribution of innovative discoveries. 

In communities of practice that depend on foraging in 
overly rich information environments, there appears to be 
pressure to self-organize into a balance of some division of 
labor, plus some degree of cooperation. This was evident in 
the study of social information foraging among scholars. 
The division of labor is necessary because of the limits of 
human attention, but some investment in cooperation can 
lead to increased returns and less risk of missing something 
important. The power of cooperation is related to the 
amount of diversity of the information foragers. Greater 
diversity leads to greater returns for the group and the 
individual. This is related to the notion that brokerage 
(diverse social contacts) provides social capital, and there is 
evidence that brokers in the flow of information are more 
likely to be sources of innovative discoveries. Although 
there are benefits to cooperation, those benefits trade 
against interference effects that ultimately seem to limit the 
size of groups. In addition, because of the diversity of 
individuals, and because of the way people associate with 
like-minded people, information is typically likely to flow 
to small finite sized groups. 

 
Figure 11. An information patch model. Charnov's Marginal 

Value Theorem states that the rate-maximizing time to spend in 
patch, t*, occurs when the slope of the within-patch gain function 

g is equal to the average rate of gain, which is the slope of the 
tangent line R, The average rate of gain, R,  increases with 
improvements in the gain function, while simultaneously 
decreasing the optimal time to allocate to tag production. 

 

 
Figure 12. Fit of information patch model to observed average 
reading+tagging times and average number of tags produced 

assuming logarithmic gain functions. 
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A variety of technologies have emerged to exploit or 
enhance social information foraging. Web, blogs, email, 
internet groups, collaborative tagging, wikis, recommender 
systems, and other technologies are all aimed at supporting 
cooperative information sharing and their success implies 
their effectiveness. Given the increased ease with which it 
is possible to study social networks and information flow in 
the electronic world, it is likely that there will be more 
studies of the effects of technologies on social structure and 
social capital, hence a need for a suitable theoretical 
framework. 
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