
Mining Source Code Descriptions
from Developer Communications

Sebastiano Panichella†, Jairo Aponte‡, Massimiliano Di Penta†, Andrian Marcus?, Gerardo Canfora†
† Dept. of Engineering-RCOST, University of Sannio, Italy
‡ Universidad Nacional de Colombia, Bogota, Colombia

? Wayne State University, Detroit USA

Abstract—Very often, source code lacks comments that ade-
quately describe its behavior. In such situations developers need
to infer knowledge from the source code itself or to search for
source code descriptions in external artifacts.

We argue that messages exchanged among contribu-
tors/developers, in the form of bug reports and emails, are a
useful source of information to help understanding source code.
However, such communications are unstructured and usually not
explicitly meant to describe specific parts of the source code. De-
velopers searching for code descriptions within communications
face the challenge of filtering large amount of data to extract
what pieces of information are important to them. We propose
an approach to automatically extract method descriptions from
communications in bug tracking systems and mailing lists.

We have evaluated the approach on bug reports and mailing
lists from two open source systems (Lucene and Eclipse). The
results indicate that mailing lists and bug reports contain relevant
descriptions of about 36% of the methods from Lucene and 7%
from Eclipse, and that the proposed approach is able to extract
such descriptions with a precision of up to 79% for Eclipse and
87% for Lucene. The extracted method descriptions can help
developers in understanding the code and could also be used as
a starting point for source code re-documentation.

Index Terms—Code re-documentation, mining e-mails, pro-
gram comprehension.

I. INTRODUCTION

Consider the following situation. A developer is reading the
Java code of an unfamiliar (part of the) system. She encounters
a methods call. Ideally, a good method name would indicate its
purpose. If not, a nice Javadoc comment would explain what
the goal of the method is. Unfortunately, the method name is
poorly chosen and there are no comments. Not an uncommon
situation. At this point, the developer has the choice of reading
the implementation of the method or searching the external
documentation. It is very rare that external documentation is
written at method level granularity (especially when comments
are missing) and that such specific information is easy to
retrieve. The goal of our work is to help developers in such
situations. Specifically, we aim at providing developers with a
means to quickly access descriptions of methods.

Our conjecture is that, if other developers had any issues
related to a specific method, then a discussion occurred and
someone described the method in the context of those issues.
For example, developers and project contributors communi-
cate with each other, through mailing lists and bug tracking
systems. They often “instruct” each other about the behavior
of a method. This can happen in at least two scenarios. First,

when a person (sometimes a newcomer in the project) is trying
to solve a problem or implement a new feature, she does not
have enough knowledge about the system, and asks for help.
Second, when a person explains to others the possible cause
of a failure, illustrating the intended (and possibly also the
unexpected) behavior of a method. For example, we report
a paragraph for issue #1693 posted on the Lucene Jira bug-
tracking system1:

“new method added to AttributeSource: addAt-
tributeImpl(AttributeImpl). Using reflection it walks
up in the class hierarchy of the passed in object
and finds all interfaces that the class or superclasses
implement and that extend the Attribute interface.
It then adds the interface- instance mappings to the
attribute map for each of the found interfaces.”

which clearly describes the behavior of the AttributeSource:
addAttributeImpl(AttributeImpl) method.

We claim that unstructured communication between de-
velopers can be a precious source of information to help
understanding source code.

So, why developers could not use simple text search tech-
niques, based on text/regular expression matching utilities,
such as, grep, to find method descriptions in communica-
tion data? Such simple text matching approaches could only
identify sentences having a method name, or in general any
regular expression containing the method name plus other
strings such as the class name or some parameter names.
They would generate too many false positives. As it happens
for requirement-to-code traceability recovery [1], [2], such a
simple matching is not enough.

This paper presents and validates an approach to au-
tomatically mine source code descriptions—in particular
method descriptions—from developer communications, such
as, emails and bug reports2. It also presents evidence to support
our assumption that developer communications are rich in
useful code descriptions.

Our approach traces emails to classes, identifies affirmative
textual paragraphs in these emails, and traces such paragraphs
to specific methods of the classes. Then, it uses heuristics—

1https://issues.apache.org/jira/browse/LUCENE-1693
2For simplicity, we will only refer to mailing lists/emails, although the

approach is applicable to bug tracking systems and other similar communi-
cations. Only where it matters we will refer to mailing lists and bug tracking
systems separately.

978-1-4673-1216-5/12/$31.00 c© 2012 IEEE ICPC 2012, Passau, Germany63

based on textual similarity between paragraphs and methods,
and on matching method parameters and other keywords to
paragraphs—to filter out candidate method descriptions.

The filtering technique results in a set of one or more para-
graphs describing each method (for which a description was
found). These paragraphs may overlap, in terms of content, or
they could describe different aspects of the method behavior,
e.g., one describes the method interface and return value,
another the behavior in terms of calls to other methods, another
the exceptional behavior, etc. The technique retrieves all these
paragraphs and combines them into a method description. Such
descriptions can have multiple uses:

1) They can be used as such to help developers understand-
ing the code.

2) In perspective, an automatic tool can further process the
descriptions and automatically generate method docu-
mentation, e.g., API descriptions or comments.

We have applied the proposed approach to 26,796 bug
reports from the Eclipse project, and 18,046 emails and 3,690
bug reports from the Apache Lucene project. Results indicate
that emails and bug reports contain descriptions for about
7% of the Eclipse methods and 36% of the Apache Lucene
methods. The proposed filtering approach is able to correctly
identify method descriptions in 79% of the cases for Eclipse
and 87% of the cases for Lucene. Finally, we report several
examples describing how methods are likely described in the
developers’ communication, discussing the linguistic patterns
we found in Eclipse and Lucene for different kinds of method
descriptions.

The paper is organized as follows. Section II describes the
proposed approach. Section III reports the empirical evaluation
using data from Eclipse and Apache Lucene, while Section
IV discusses some example of method descriptions found by
the approach. Section V discusses the related work, while
Section VI concludes the paper and outlines directions for
future work.

II. MINING METHOD DESCRIPTIONS FROM
COMMUNICATIONS

This section describes the proposed approach for mining
method descriptions in mailing lists or bug reports.

A. Step 1: Downloading Emails and Tracing them onto
Classes

First, we download mailing list archives and all bug re-
ports concerning the analyzed time period of the investigated
projects. Then, we extract the body from emails using a Perl
mailbox parser (Mail::MboxParser). Bug reports (downloaded
in HTML) are first rendered using a textual browser lynx and
then the text is extracted using a Perl script. Then, we trace
emails onto source code classes (referring to the system release
before the email date). For this purpose, we use two heuristics:

1) We use an approach similar to the one proposed
by Bacchelli et al. [3], [4]. More specifically,
we assume there is an explicit traceability link
between a class and an email whenever (i) the

email contains a fully-qualified class name (e.g.,
org.apache.lucene.analysis.MappingCharFilter;);
or (ii) the email contains a file name (e.g.,
MappingCharFilter.java)—provided that there are
no other files with the same name, or that the file name
is also qualified with its path.

2) For bug reports, we complement the above heuristic by
matching the bug ID of each closed bug to the commit
notes, therefore tracing the bug report to the files changed
in that commit (if any are found).

B. Step 2: Extracting Paragraphs

During a preliminary investigation we determined—by in-
specting emails from out case studies—that paragraphs de-
scribing different aspects of the email topic are separated by
one or more white lines. Therefore, we use such heuristics
to split each email into paragraphs. For bug reports, different
posts related to the same bug report are treated as separated
paragraphs.

Emails often contain source code fragments and/or stack
traces that should be pruned as we are interested to mine
descriptive text only (in future, we plan to keep such code
fragments into account to better link paragraphs to source
code). To remove them, we used an approach inspired to the
work of Bacchelli et al. [5]. We computed, for each paragraph,
the number and percentage of programming language key-
words and operators/special characters (e.g., curly braces, dots,
arithmetic and Boolean operators, etc.). Paragraphs containing
a percentage of keywords and special characters/operators
higher than a given threshold are discarded. Calibrating such
a threshold requires a trade-off. We adopt a conservative ap-
proach and are willing to accept losing a few good paragraphs.
Similarly to what also shown in the paper by Bacchelli et al.
[5], we found a threshold of 10% to be the best compromise
between losing good paragraphs and keeping source code
fragments. Remember that our goal is to provide precise
descriptions to the developer in order to save time and effort.

A further processing—performed using the English Stan-
ford Parser3 [6]—aims at preserving only paragraphs in the
affirmative form, removing those in interrogative forms—
because we assume that method description should not contain
interrogative sentences—as well as pruning out sequences of
words that the parser was not able to analyze, i.e., sequences
of words that cannot be considered valid English sentences.

C. Step 3: Tracing Paragraphs onto Methods

To trace paragraphs onto methods, we first extract signatures
for all methods in a system version released before the email
being analyzed. This is done using the Java reflection API.

Then, we identify the paragraphs referring a method. These
paragraphs shall meet the following two conditions:
• They must contain the keyword “method”. This is be-

cause we are searching sentences like “The method foo()
performs...”. Indeed, there could be cases where the

3http://www-nlp.stanford.edu

64

method is referred and described in a sentence not con-
taining the keyword “method” (e.g., “foo() performs...”).
However, we observed in a preliminary analysis that such
cases occur mostly when the method is mentioned in
other contexts (e.g., describing a fault) rather than when
communicating a method description to other people.

• They must contain a method name, among the methods of
classes traced to the email in Step 1. We also require that
such a name must be followed by a open parenthesis—
i.e., we match “foo(” while we do not consider “foo”.
This is to avoid cases when a word matches a method
name, while it is not intended to refer to the method.
For example, we found several paragraphs like that e.g.,
“Method patch”, where “patch()” was actually a method
of a class traced onto the email.

It is important to note that such a process can be subject to
ambiguities. First, an email can be traced onto multiple classes,
having one or more method with the same name (and maybe
even the same signature). In such a cases, the paragraph is
assigned to all of these classes. Second, there may be over-
loaded methods. Where possible, this is resolved by comparing
the list of parameter names mentioned in the paragraph with
the list of parameters in the method signature as extracted
from the source code. When this is not sufficient to resolve
the ambiguity, we conservatively assign the paragraph to all
matched methods. As explained later (Step 5) both ambiguities
can be mitigated by computing the textual similarity between
the paragraph and the method.

D. Step 4: Filtering the Paragraphs

We defined—based on the manual inspection of hundreds
of emails— a set of heuristics to further filter the paragraphs
associated with methods.

These heuristics encode some observed rules of discourse
commonly used by developers in emails. The first heuristic
concerns method parameters: it is required that, if a method
has parameters, at least some of them are mentioned in the
method description. We count the number and percentage
of method parameter names mentioned in the paragraph.
We define a score, s1 as the ratio between the number of
parameters mentioned and the total number of parameters in
the method. We consider s1 = 1 if the method does not have
parameters.

We defined three additional heuristics that captures charac-
teristics of three different categories of method descriptions,
i.e., syntactic descriptions, description of how a method over-
loads/overrides another one, and descriptions of how a method
performs its task by invoking other methods.

1) Syntactic descriptions (mentioning return values): if a
method is not void, we check whether the paragraph
contains the keyword “return”. We define a score s2 = 1
if the method is void, or if is not void and the paragraph
contains “return”, zero otherwise.

2) Overriding/Overloading: keywords such as “overload” or
“override” are likely to be contained in some paragraphs
describing methods. This, in particular, happens when a

paragraph describes the additional behavior with respect
to the overridden/overloaded method. We define a score
s3 = 1 if any of the “overload” or “override” keywords
appears in the paragraph, zero otherwise.

3) Method invocations: when a paragraph describes a
method, often it describes it in terms of invocation
of other methods. Therefore, we mine the paragraphs
containing for the words “call”, “execute”, “invoke” (or
their plurals/conjugations). We define a score s4 = 1
if any of the “call”, “execute”, or “invoke” keywords
appears in the paragraph at least once, zero otherwise.

We apply the above described heuristics by constraining the
set of selected paragraphs such that s1 ≥ thP and s2 + s3 +
s4 ≥ thH , where thP is a threshold we set for the parameter
heuristic and thH is a threshold for the other heuristics. Details
about the two thresholds are reported in Section III-A.

E. Step 5: Computing Textual Similarities Between Para-
graphs and Methods

After having filtered paragraphs using the heuristics, we
rank them based on their textual similarity with the method
they are likely describing. The rationale is that, other than
the method name, parameter names, and other keywords
identified in Step 4, such paragraphs would likely contain
other words (e.g., names of invoked methods, variable names,
local variables, etc.) contained in the method body. Also, as
mentioned above, computing such a similarity would help
mitigating ambiguities when tracing paragraphs onto methods.

To this aim, we extract the method’s text from the system
source code (again, referring to a version before the email).
This is done using the srcml analyzer [7]. Then, we normalize
the method text removing special characters, English stop
words, and programming language keywords, and splitting the
remaining words using the camel case heuristics. A similar
text pruning is performed on paragraphs. After that, we index
the paragraphs and the methods using a Vector Space Model
implemented with the R4 lsa package.

We compute the textual similarity between each paragraph
Pk and the text of each traced method Mi using the cosine
similarity [8]. For each method Mi, we rank its relevant
paragraphs Pk by the similarity measure. Finally, we consider
only the paragraphs that have a similarity measure higher
than a threshold thT . These are the paragraphs that are
presented to the user as containing a description to the method
Mi. As it will be shown in Section III-C, varying thT will
produce different results in terms of precisions and of retrieved
candidate method descriptions.

F. Limitations of the Proposed Approach

Our proposed approach—to the best of our knowledge—
represents the first attempt to mine method descriptions from
developers’ communication. As with any work that addresses
a problem in premiere, limitations exist, which we hope to
address in future work. We highlight here those that should

4http://www.r-project.org

65

be kept in mind while interpreting the results of our empirical
evaluation from the next section:
• We do not consider sequences of paragraphs that can

describe the same method. In some cases, a method
description can be longer than one paragraph and thus
span over multiple paragraphs. A preliminary attempt
at clustering subsequent paragraphs to the ones that
mention a method drastically lowered the precision of
our approach. More sophisticated approaches are needed
to address this issue.

• Paragraphs often describe partial/exceptional behavior.
In some cases, the paragraphs describe only part of the
method behavior, because the communication concerns
only that part. In other cases, the paragraphs describe
exceptional behavior. We believe that such paragraphs
are useful to the developers to get a complete or partial
overview of a method’s syntax and behavior.

• We do not really mine abstractive method description,
but rather extractive descriptions. Since our technique
uses textual similarities, it will recover paragraphs de-
scribing a method behavior only if this is done using
(some of) the elements (e.g., names of invoked methods,
method parameters, local variables, etc.) contained in the
method body—a.k.a, extractive description. For example,
our approach may not recover a paragraph providing
a high-level description of an algorithm (e.g., imag-
ine a paragraph describing a sorting algorithm), which
uses terminology not used in the implementation of the
method—a.k.a., abstractive description. However, mixed
descriptions will likely be retrieved by the approach.

III. EMPIRICAL EVALUATION

The goal of this study is to evaluate the proposed approach
for extracting method descriptions from developers’ commu-
nications. The quality focus is the ability of the proposed
approach to cover methods from the analyzed systems, as well
as the precision of the proposed approach. The perspective is
of researchers who want to evaluate to what extent mining
developers’ communications can be used to support code
understanding and to what extent the proposed approach is
able to identify method summaries with a reasonable precision.
The context consists of bug reports from the Eclipse project
and both mailing lists and bug reports from the Lucene
project. Eclipse5 is an open-source integrated development
environment, written in Java. Lucene6 is a text retrieval library
developed in Java. Table I reports some relevant characteristics
of the two systems and the data we used. While Eclipse can
be considered as a large system, Lucene is a small-medium
system.

The empirical study reported in this section aims at address-
ing the following research questions:
• RQ1 How many methods from the analyzed software

systems are described by the paragraphs identified by

5http://www.eclipse.org
6http://lucene.apache.org

TABLE I
CHARACTERISTICS OF THE TWO SUBJECT SYSTEMS.

Characteristic Eclipse Lucene
Analyzed Period 2001–2010 2001–2011
KLOC range 283-2,486 6–345
#of classes (range) 4,829–18,834 427–528
#of methods (range) 31,132–117,654 2,432–2,952
of bug reports 26,796 3,690
of emails – 18,045
of paragraphs from bug reports 202,539 115,504
of paragraphs from emails – 91,408
Total # of paragraphs 202,539 206,912

the proposed approach? While we do no expect to find
descriptions for all, or nearly all of the methods, we
believe that the approach would be useful in the practice
only if finding descriptions for a given method would not
be an extremely rare event.

• RQ2 How precise is the proposed approach in identifying
method descriptions? This research question aims at
determine whether the mined description are meaningful
method descriptions, or whether they are, instead, false
positives. While some false positives are unavoidable, too
many of them would make the approach unpractical.

• RQ3 How many potentially good method descriptions
are missed by the approach? This research question aims
at providing an idea of how the proposed approach is
affected by false negatives, i.e., filtering out good method
descriptions.

A. Threshold Calibration

Step 4 of the proposed approach relies on two thresholds,
thP and thH . To calibrate thP , we analyze the distribution
parameters referred to in the paragraphs traced onto methods.
For Eclipse, the percentage of parameters had a minimum and
first quartile equal to zero, a median=50%, and a third quartile
and maximum equal to 100%. We selected the median as
threshold and analyzed the performance with different settings
for thP varying it between 0% and 100% in 10% steps.
We confirmed that the median choice works equally well for
Lucene. We realize that such a rule for selecting thP cannot
be easily generalized, but it worked for these two systems and
for proof of concept purpose. Investigating the generality of
this rule is subject of future work.

Regarding thH , we set it to 1—i.e., accepting all cases
where s2 + s3 + s4 ≥ 1—in order to select paragraphs con-
taining at least one keyword able to characterize the paragraph
with respect to the different kinds of method descriptions
outlined in Step 4 of the approach. Once again, identifying
alternative rules for calibration, which generalize better, is
subject of future work.

The effect of the third threshold, thT , on the precision of
the approach is analyzed in detail in the following subsection.

B. Evaluation Procedure

First, we extracted, using Steps 1-3 of the proposed ap-
proach, a set of candidate paragraphs that are traced onto
methods. We refer to them as the subset of traced paragraphs.

66

After that, we performed a first pruning using the heuristics
from Step 4, i.e., selecting all paragraphs—referred to as
candidate descriptions from here on—having thP ≥ 0.5 and
thH ≥ 1.

Subsequently, we computed the cosine similarities, with the
aim of investigating how the performance of the approach
varies by considering only paragraphs having a cosine sim-
ilarity greater than a given threshold.

Then, we built the oracle against which to validate our
results. The oracle was done by manually validating a sample
of the candidate descriptions. Since it was not possible to man-
ually validate all descriptions, we sampled 250 descriptions for
each project. Such a sample allows to achieve estimations with
a confidence interval of ±5% assuming a significance level of
95% [9]. We decided not to perform a random sampling of
the descriptions: since our aim is to analyze how the precision
and the method coverage vary with different thresholds of the
cosine similarity, we wanted to include in the sample enough
data points representative of different cosine ranges. Therefore,
the most appropriate way to proceed was to apply a stratified
sampling. We divided our population of candidate descriptions
in sets according to five classes of cosine range: 0%-20%,
20%-40%, 40%-60%, 60%-80%, and 80%-100%. Then, based
on the distribution of descriptions over the different classes,
we randomly sampled 25, 50, 100, 50, 25 descriptions for the
five classes, respectively.

Then we asked three reviewers to analyze the sampled
descriptions and decide whether they were, or not, reasonable
paragraph descriptions. Two reviewers were two of the paper
authors (one of which did not know the detail of the mining
algorithm at the time the validation was performed, so not
to bias such a validation), and the third reviewer was a PhD
student not involved in the work. To rate a description, the
three reviewers had the system source code available and
checked whether the description is, indeed, one possible way
a method could be described, either in terms of its syntax, as
extension of other methods, or in terms of a method invocation
chain. If all three reviewers agreed that a paragraph is a
specific kind of description for a method, then the paragraph
was classified as true positive. If all three reviewers agreed
that a paragraph is not a good description for a method,
then the paragraph was classified as false positive. When they
disagreed, they discussed until they reached consensus. In the
end, 500 paragraphs were included in the oracle.

To address RQ1 we considered all the methods in the ana-
lyzed systems, whereas for RQ2 we only used the paragraphs
in the oracle, in order to analyze how the method coverage
(RQ1) and the precision (RQ2) change when increasing the
cosine threshold. We define the method coverage for a given
cosine threshold thT as the percentage of the methods in the
system for which there exists at least one candidate description
traced onto it and such that cos(mi, Pj) > thT . We define the
precision for a given cosine threshold thT as the percentage
of true positives in the oracle for which cos(mi, Pj) > thT .

Addressing RQ3 is more difficult. We are aware that
precisely assessing false negatives would be impossible (it

TABLE II
NUMBER OF PARAGRAPHS AND METHOD COVERAGE AFTER APPLYING

FILTERING FROM STEPS 2, 3 AND 4 OF THE APPROACH.

Filtering Eclipse Lucene
of method # of method

paragraphs coverage paragraphs coverage
Step 2 202,539 – 206,912 –
Step 3 42,095 22% 12,417 65%
Step 4 3,111 7% 3,707 36%

would require analyzing the entire body of emails). Instead,
we extracted a small sample (100 paragraphs for each project,
thus in total further 200 paragraphs) from the set of paragraphs
pruned after applying the Step 3 heuristics, i.e., all paragraphs
that can be mapped onto a method (and not all possible
paragraphs, because we assume that a paragraph describing a
method at least mentions it), but do not satisfy our similarity-
based filtering. We manually validated the sample similarly
to how we did it for the oracle, in order to compute the
percentage of false negatives in the sample.

C. Results

Table II reports results about the number of paragraphs
obtained after applying steps 2, 3, and 4 of the approach,
i.e. (2) the initial set of paragraphs extracted from the emails
after pruning out source code and irrelevant sentences (short
and interrogative ones), (3) the number of paragraphs traced to
methods, and (4) the number of paragraphs traced to methods
that satisfy the filtering according to Step 4 heuristics i.e.,
paragraphs with thP ≥ 0.5 and thH ≥ 1. The table also
reports, for the last two cases, the percentage of covered
methods. As it can be noticed, about 20% of the Eclipse
paragraphs and 5% of the Lucene paragraphs can be traced
to methods (Step 3), which ensures a coverage of 22% of the
Eclipse methods and 65% of the Lucene methods. However,
such paragraphs do not satisfy the heuristics of Step 4, nor
they are constrained by any textual similarity threshold.

When applying the heuristics of Step 4, the number of
paragraphs is reduced to 3,111 for Eclipse and 3,707 for
Lucene, which results in 7% method coverage for Eclipse and
36% for Lucene.

Fig. 1 reports the achieved precision and the method cov-
erage for both Eclipse and Lucene. The x-axis shows the
increasing cosine similarity threshold, thT , while the y-axis
shows both the precision and the method coverage. Note
that the precision is on a 0-100% scale, whereas maximum
coverage for Eclipse is 22% and for Lucene is 65%.

The results for both systems correspond to our expectations,
i.e., increasing the cosine threshold results in an increase in
precision and it comes at the cost of reduced method coverage.
An interesting phenomenon is that the increase in precision
peaks (79% for Eclipse and 87% for Lucene) at a threshold
of approximately 0.5 for both systems, which means that
maximum precision can be achieved without complete loss
of method coverage. In both cases, the difference between the
minimum and maximum precision is higher than the differ-
ence between the minimum and maximum method coverage

67

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
2
0

4
0

6
0

8
0

Cosine threshold

P
re

c
is

io
n
 /
 M

e
th

o
d
s
 c

o
ve

ra
g
e

Precision

% of Methods

58%

64%
66%

69%

79% 79%

71%

58%

7% 7% 6% 4% 3% 2% 1% 1%

(a) Eclipse

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
2
0

4
0

6
0

8
0

Cosine threshold

P
re

c
is

io
n
 /
 M

e
th

o
d
s
 c

o
ve

ra
g
e

Precision

% of Methods

74% 77% 77% 78%
82%

87%

73%
70%

36% 34%
30%

25%
20%

15%

8%
4%

(b) Lucene

Fig. 1. Precision and method coverage for different levels of similarity. Note
that the maximum possible coverage would be (see Step 3 of Table II) 22%
for Eclipse and 65% for Lucene.

(proportionally). In other words, the precision gain increases
slower than the loss in method coverage. Method coverage
in Eclipse for highest precision is about 3% (which means
covering between 933 and 3,530 methods, depending on the
version), and for Lucene is about 15% (which means covering
between 365 and 442 methods).

We can summarize the results related to RQ1 (method
coverage) and RQ2 (precision) stating that, on the one hand,
the proposed approach is precise enough to mine method de-
scriptions, thus reducing the developers’ burden to go through
a wide number of false positives. On the other hand, the
percentage of covered methods could appear as relatively low,
thus it is useful to pursue a compromise between coverage and
precision. However, it is important to note that (i) we cannot
really expect to find descriptions for all methods, especially
for large systems like Eclipse (for which, by the way, we do
not have emails, but bug reports only), and (ii) the coverage

depends a lot on the quality—with respect to our goal of
mining descriptions—of the project discussion, which in our
case seems to be better for Lucene than for Eclipse.

Regarding RQ3—i.e., the presence of false negatives—the
analysis of a sample of 100 paragraphs traced to methods,
but not satisfying the Step 4 heuristic, indicates that, for
Eclipse, 78 out 100 paragraphs have been classified as true
negatives, leaving 22 paragraphs that could represent good
method descriptions, but that were discarded by our heuristics.
For Lucene, 67 paragraphs were classified as true negatives,
leaving a relatively large (33%) number of false negatives.
Although this can be seen as a limitation of the proposed
approach for capturing good method descriptions, this can be
explained by the peculiar characteristics of the Lucene mailing
lists and bug reports, which contain many very good method
descriptions, as it has also been noticed from the high precision
obtained for RQ2. As stated before, heuristics that result in
a better balance between a low number false negatives and a
low number false positives will be investigated in the future.
The current results are encouraging enough to motivate future
research.

D. Threats to Validity

This section describes the main threats to validity that
can affect the evaluation of our results. Given the kind of
validation performed, it is worthwhile to mainly discuss threats
to construct and external validity.

Threats to construct validity mainly concern, in this context,
the measurements used in the evaluation. First, we are aware
that, for assessing precision, we sampled only a subset of
the extracted descriptions. However, (i) the sample size limits
the estimation imprecision to ±5% for a confidence level of
95%, and (ii) to limit the subjectiveness and the bias in the
evaluation, three evaluators (one not involved in the paper
and one not knowing the details of the approach) manually
analyzed the sample. Another threat to construct validity
concerns RQ3. As explained in Section III-B, it is always
difficult to perform a thorough assessment of false negatives.
To deal with such a threat we evaluated a sample of 100
paragraphs not detected by the proposed heuristics. The actual
number of false negatives in the entire system may be different
than in the random sample.

Threats to external validity concern the generalization of
results. We must remember that the main aim of this paper is
to investigate whether mailing lists and bug tracking systems
are a useful source of information for understanding and
potentially re-documenting source code, and to propose a
novel approach to mine such descriptions (at proof of concept
level), rather than to perform a thorough evaluation. The
empirical evaluation here is limited to mailing lists/bug reports
from two systems only. Clearly, it is important to point out that
variables such as the project domain, the availability of mailing
lists and bug reports (as well as their quality) could influence
the performance of the proposed approach. Therefore, a more
extensive evaluation with data sets from further systems is

68

TABLE III
EXAMPLES OF TRUE POSITIVE PARAGRAPHS FOR ECLIPSE.

Class Method Paragraph
ServiceLoader ServiceLoader Similarly to osgi services, the java serviceloader takes the name of the class for which

you want a service. In the present case, we want an instance of the JavaCompiler
service, so the actual call being made is: ServiceLoader.load(javax.tool.JavaCompiler)
This method returns an iterator on all the services available.

Wizard addPages In the particular case of the NewLocationWizard, you should be able to get around it
by creating a protected createMainPage method which you can override in the subclass.
You can then call super.addPages() from the subclass (Wizard) add pages to avoid the
duplication of the setting of the properties. I still don’t think that ”alternative” is the
proper term to use everywhere.

GC drawString The -1 value for bidiLevel is correct since it indicates that you’re not using bi-directional
text. As Randy mentioned, this might be a GDI+ issue that got introduced in 3.5. Create
an SWT GC, invoke setAdvanced(true), and then use its drawString() method to draw
some text in your language. Also try drawText().

TABLE IV
EXAMPLES OF TRUE POSITIVE PARAGRAPHS FOR LUCENE.

Class Method Paragraph
AttributeSource addAttributeImpl New method added to AttributeSource: addAttributeImpl(AttributeImpl). Using reflection

it walks up in the class hierarchy of the passed in object and finds all interfaces that
the class or superclasses implement and that extend the Attribute interface. It then adds
the interface- instance mappings to the attribute map for each of the found interfaces.
AttributeImpl now has a default implementation of toString that uses reflection to print
out the values of the attributes in a default formatting.

Scorer score This proposes to expose appropriate API on Scorer such that one can create an optimized
Collector based on a given Scorer’s doc-id orderness and vice versa. QueryWeight
implements Weight, while score(reader) calls score(reader, false /* out-of-order */) and
scorer(reader, scoreDocsInOrder) is defined abstract. One other optimization is to expose
a topScorer() API (on Weight) which returns a Scorer that its score(Collector) will be
called, and additionally add a start() method to DISI. That will allow Scorers to initialize
either on start() or score(Collector).

Query weight The method Query.weight() was left in Query for backwards reasons in Lucene 2.9
when we changed Weight class. This method is only to be called on top-level queries
- and this is done by IndexSearcher. This method is just a utility method, that has
nothing to do with the query itsself (it just combines the createWeight method and calls
the normalization afterwards). For 3.3 I will make Query.weight() simply delegate to
IndexSearcher’s replacement method with a big deprecation warning, so user sees this.
In IndexSearcher itsself the method will be protected to only be called by itsself or
subclasses of IndexSearcher.

highly desirable. Last but not least, the generalization of the
heuristics calibration cannot be guaranteed by our evaluation.

IV. QUALITATIVE ANALYSIS

This section provides a qualitative analysis of some ex-
emplar paragraphs, identified during the manual validation.
The aim is to: (i) show examples of the various kinds of
descriptions that the approach is able to mine; (ii) explain why
the approach, in some cases, detected false positives; and (iii)
explain why the approach missed some good descriptions, i.e.,
false negatives. In summary, starting from what we collected
during our validation, it is possible to classify the retrieved
paragraphs as follows:

• True positive paragraphs: these are paragraphs identified
by the proposed approach, that the human validation
classifies as properly describing a given method. Such
paragraphs can be used to help understanding the source
code or to re-document it.

• False positive paragraphs: these are paragraphs identified
by the proposed approach, however, based on the human
validation, they do not really have the purpose of pro-

viding a method description. Such paragraphs reduce the
precision of the approach.

• True negative paragraphs: these paragraphs are not se-
lected by the proposed approach and, indeed, they do not
describe methods, while they possibly refer to a method
for other purposes.

• False negative paragraphs: these paragraphs are dis-
carded by the proposed approach, however they represent
good method descriptions.

The examples reveal several discourse patterns that charac-
terize true positive, false positive, and false negative method
descriptions. Regarding true positives, these paragraphs are
always composed of sentences in affirmative form, directly
explaining a method’s syntax or behavior. For Lucene (Ta-
ble IV), the first true positive example is a clear description
of the addAttributeImpl method from the AttributeSource class.
In this case, the developer initially informs others about the in-
troduction of a new method and after that he explains what the
method does: “finds all interfaces that the class or superclasses
implement and that extend the Attribute interface” and “adds
the interface or instance mappings to the attribute map for each

69

TABLE V
EXAMPLES OF FALSE POSITIVE PARAGRAPHS FOR ECLIPSE.

Class Method Paragraph
Table releaseWidget Similar (and related) NPE is on Table class, on releaseWidget() method call

- the last element in columns[] array is null.
WorkbenchPart dispose It must be the last method called on the contribution item. After calling

dispose(), it is a bug to continue using the contribution item
OperationCanceledException OperationCanceledException On thinking about it, throwing OperationCanceledException would be un-

usual since the method does not take a progress monitor parameter. Returning
a CANCEL status seems like the best approach.

TABLE VI
EXAMPLES OF FALSE POSITIVE PARAGRAPHS FOR LUCENE.

Class Method Paragraph
MultiReader isOptimized These 3 methods should probably be fixed: isOptimized() would fail - similar to

isCurrent() setNorm(int, String, float) would fail too, similar reason. directory() would
not fail, but fall to return the directory of reader[0]. This is because MultiReader()
(constructor) calls super with reader[0] again. I am not sure.

SegmentReader termDocs Yes, but this class is package private and unused! AllTermDocs is used by SegmentReader
to support termDocs(null), but not AllDocsEnum. The matchAllDocs was just an
example, there are more use cases, e.g. a TermsFilter (that is the non-scoring TermQuery
variant): Just use the DocsEnum of this term as the DicIdSetIterator.

TopDocsCollector topDocs We might also consider deprecating the topDocs() methods that take in parameters and
think about how the paging collector might be integrated at a lower level in the other
collectors, such that one doesn’t even have to think about calling a diff. collector

of the found interfaces”. This paragraph was extracted from a
list of candidate descriptions with highest score (cosine=0.74),
where each of these paragraph refer to 100% of the method
parameters, in this case addAttributeImpl. We can find only
phrases in affirmative form without sentences in dubitative
form. In same way, for Eclipse (Table III) if we observe
the first true positive example—describing the constructor
ServiceLoader—we can find a paragraph in affirmative form
without sentences in dubitative form. It is important to note
that this paragraph, with respect to the first example paragraph
of Lucene, obtained highest rank because if refers to 100% of
the parameters of ServiceLoader and it contains the keywords
“call” and “return” and thus it describes the method in terms
of invocation of other methods and in terms of its returned
value (syntactic descriptions).

If we look at false positives, for Eclipse (Table V) we can
notice examples of descriptions that are too specific (e.g.,
for the releaseWidget method), hence not particularly useful
to properly understand the entire method. Other examples
are related to faulty behavior (dispose) and about a possible
bug fixing (constructor of OperationCanceledException). For
Lucene (Table VI), the candidate description of the isOpti-
mized method from the MultiReader class consists, actually,
in a proposal of bug fixing for several methods. Regarding the
termDocs method from the SegmentReader class, the para-
graph mainly describes dependencies among methods rather
than describing method behavior. In some sense, this could
also be considered a true positive (e.g., useful to understand
method dependencies), although our evaluators classified it
as a false positive because the paragraph did not clearly
describe the method behavior. The last case (the topDocs
method from the TopDocsCollector class) is a paragraph where
people suggest to deprecate such a method and integrate the

behavior elsewhere. Also in this case, the description could
be, in principle, considered a useful one, although it was
not considered as such because the paragraph described the
behavior to be refactored. In conclusions, false positives either
concern borderline cases—which could be useful in some
cases and hence increase the amount of useful material a
developer has to comprehend the source code—or cases such
as faulty or future behavior which would not easy to discern
automatically. This also suggests that the results strongly
depend on the data source we use (i.e., the content of the
emails and, above all, of the bug reports), indicating that some
sources, such as bug reports, in some case contain descriptions
that are not appropriate for describing the correct, current
behavior of a method.

Finally, concerning the false negatives (Tables VII and
VIII for Eclipse and Lucene respectively), many of them
were descriptions discarded because they describe the methods
without containing keywords (such as, “return”, “override”,
“invoke”, etc.) we used for filtering. For example, in the case
of Lucene, the paragraph referring to the optimize method
from the IndexWriter class contains the sentence “I found
that IndexWriter.optimize(int) method does...” containing the
class name and method name, yet it does not contain any of
the above keywords. A similar situation occurs for the parse
method from the TrecFTParser class. Similar examples can
be found in Eclipse, where the doubleClicked method from
the JavaStringDoubleClickSelector class is, again, described
properly, yet none of the filtering keywords is mentioned.
In conclusion, this suggests that some false negatives could
have been avoided by weakening the filtering criteria, however
this would also have reduced the precision and hence would
have increased the amount of (possibly useless) descriptions
a developer has to browse.

70

TABLE VII
EXAMPLES OF FALSE NEGATIVE PARAGRAPHS FOR ECLIPSE.

Class Method Paragraph
JavaStringDoubleClickSelector doubleClicked What it does is: - change the behavior of the doubleClicked() methods to also consider

the endpoint of the mouse selection for its calculation of the text selection.
Engine accept If I understood TypeDescriptor.initialize() method correctly, it is not interested in the

method code, so you could use classReader.accept(visitor, ClassReader.SKIP\ CODE)
to completely skip all methods code from visiting. Same applies to implementation of
SearchEngine.getExtraction(..) and TagScanner.Visitor.getMethods(..) methods, where
you also can add ClassReader.SKIP\ CODE to avoid visiting method code.

TABLE VIII
EXAMPLES OF FALSE NEGATIVE PARAGRAPHS FOR LUCENE.

Class Method Paragraph
IndexWriter optimize I found that IndexWriter.optimize(int) method does not pick up large segments with

a lot of deletes even when most of the docs are deleted. And the existence of such
segments affected the query performance significantly. I created an index with 1 million
docs, then went over all docs and updated a few thousand at a time. I ran optimize(20)
occasionally. What saw were large segments with most of docs deleted. Although these
segments did not have valid docs they remained in the directory for a very long time
until more segments with comparable or bigger sizes were created.

TrecFTParser parse In TrecFTParser.parse(), you can extract the logic which finds the date and title into a
common method which receives the strings to look for as parameters (e.g. find(String
str, String start, int startlen, String end)).

V. RELATED WORK

Our approach relates to previous work both in its goals and
execution.

Previous results that are closest to our work and used in
our approach (see Section II) were published by Bacchelli
et al. [4], [5], [10]. What relates this work to our approach
is the use of similar heuristics, as well as the main goal
of connecting emails and source code. What differentiates
our work is the emphasize on methods (rather than classes)
and the specific focus on paragraphs describing the methods.
Another work concerned with extracting technical information
(such as, source code elements) embedded in emails and
other unstructured information [11], uses spell checking tools,
yet it is not concerned with identifying relevant parts of
the code. Recently Bettenburg et al. [12] used an approach
relying on clone detection to link emails to source code. While
the purpose of our work is different, their approach could
potentially be used—as we plan to do in future work—to
increase the performances of our approach.

Many techniques for traceability link recovery between
software artifacts [13]and many recommendation systems [14]
aim at connecting specific source code artifacts to unstructured
text documents. Traceability link recovery techniques based on
text retrieval techniques [1], [2] are usually used to connect
source code and text-based documentation. Two issues dif-
ferentiate all such approaches to traceability from our work:
(i) none of them specifically addresses methods and emails
as linking artifacts; and (ii) none of them is concerned with
the establishing that the external artifacts (i.e., emails in our
case) contain specifically description of methods. Likewise,
some recommendations systems, such as, Hipikat [15], are
based on the use of text retrieval techniques. As opposed
to most traceability techniques, Hipikat handles method level

granularity and emails and it can recommend emails related
to a method, yet it does not extract the descriptive parts of the
emails.

Our approach relies on heuristics that capture discourse
rules that developers follow when describing code in their
communications. Previous work [16], [17] looked into how
developer describe problems in bug reports. Rules of discourse
in source comments were also investigated. For example,
Etzkorn et al. [18] found that 75% of sentence-style comments
were in the past tense, with 55% being some kind of oper-
ational description (e.g., “This routine reads the data.”) and
44% having the style of a definition (e.g., “General matrix”).
Likewise, Tan et al. [19] analyzed comments written in natural
language to extract implicit program rules and used these rules
to automatically detect inconsistencies between comments and
source code, indicating either bugs or bad comments. In
the same realm, Zhong et al. [20] proposed an approach,
called Doc2Spec, that infers resource specifications from API
documentation in natural languages.

One of the potential uses of our approach is the re-
documentation of source code by generating method sum-
maries using the paragraphs extracted from the emails and
bug reports. Existing work addressed the issues of using the
code and comments in methods to generate method summaries.
Most recent approaches used language generation techniques
[21] and information retrieval techniques [22] to generate
method summaries. Some of these summaries are not unlike
some of the paragraphs our approach retrieves.

VI. CONCLUSION AND FUTURE WORK

We verified in this work our hypothesis that developer
communications, such as, mailing lists and bug reports, contain
textual information that can be extracted automatically and
used to describe methods from Java source code. We found

71

that at least 22% of the methods in Eclipse and 65% of
the methods in Lucene are specifically referenced in emails
and bug reports. Only a part of these references are in-
cluded in paragraphs that describe the methods and can be
automatically retrieved by our approach. Our approach to
mine method descriptions from developers communication—
and specifically from mailing lists and bug tracking systems,
first traces emails/bug reports to classes, and then, after
extracting paragraphs, traces them to methods. After that,
it relies on a set of heuristics to extract different kinds of
descriptions, namely: (i) descriptions explaining methods in
terms of their parameters and return values; (ii) descriptions
explaining how a method overloads/overrides another method;
and (iii) descriptions of how a method works by invoking other
methods. Finally, a further pruning is performed by computing
the textual similarity between the paragraphs and the method
body.

Our empirical evaluation indicates that the proposed ap-
proach is able to identify descriptions with a precision up
to 79% for Eclipse and up to 87% for Lucene. The method
coverage of these descriptions is low for Eclipse, ranging
between 7% and 2%, and higher for Lucene, ranging be-
tween 36% and 15%. The low method coverage is the result
of two factors: (i) only part of the methods are described
properly in these communications, and (ii) our approach is
rather conservative as we focused on achieving high precision,
given the envision usage scenario (i.e., a developer trying to
understand quickly what a method does). Our investigation
revealed the presence of linguistic patterns that—at least for
the two analyzed systems—characterize different kinds of
method descriptions.

There are several directions for future work. First, this is
a first approach aimed at mining method descriptions from
external unstructured artifacts, therefore there is still a lot of
space for improvement with the aim of increasing the precision
while keeping the method coverage as high as possible, as well
as reducing the percentage of false positives. Furthermore,
we would aim at further validating the proposed approach
on a larger data set, including mailing lists and bug reports
from more systems. It is important to establish whether the
values we used for the heuristics of our approach work equally
well on other data sets. Finally, we would also investigate
approaches for mining descriptions of software artifacts at a
higher level of abstraction, such as classes and packages.

ACKNOWLEDGMENTS

We would like to thank Annibale Panichella for his help
in the manual validation of the results. Andrian Marcus was
supported in part by grants from the US National Science
Foundation: CCF-1017263 and CCF-0845706.

REFERENCES

[1] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo,
“Recovering traceability links between code and documentation,” IEEE
Trans. Softw. Eng., vol. 28, no. 10, pp. 970–983, 2002.

[2] A. Marcus and J. I. Maletic, “Recovering documentation-to-source-code
traceability links using latent semantic indexing,” in Proceedings of 25th
International Conference on Software Engineering. Portland, Oregon,
USA: IEEE CS Press, 2003, pp. 125–135.

[3] A. Bacchelli, M. D’Ambros, M. Lanza, and R. Robbes, “Benchmarking
lightweight techniques to link e-mails and source code,” in 16th Working
Conference on Reverse Engineering, WCRE 2009, 13-16 October 2009,
Lille, France. IEEE Computer Society, 2009, pp. 205–214.

[4] A. Bacchelli, M. Lanza, and R. Robbes, “Linking e-mails and source
code artifacts,” in Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 1, ICSE 2010, Cape
Town, South Africa, 1-8 May 2010. ACM, 2010, pp. 375–384.

[5] A. Bacchelli, M. D’Ambros, and M. Lanza, “Extracting source code
from e-mails,” in The 18th IEEE International Conference on Program
Comprehension, ICPC 2010, Braga, Minho, Portugal, June 30-July 2,
2010. IEEE Computer Society, 2010, pp. 24–33.

[6] D. Klein and C. D. Manning, “Fast exact inference with a factored
model for natural language parsing,” in Advances in Neural Information
Processing Systems 15 [Neural Information Processing Systems, NIPS
2002, December 9-14, 2002, Vancouver, British Columbia, Canada].
MIT Press, 2002, pp. 3–10.

[7] M. L. Collard, H. H. Kagdi, and J. I. Maletic, “An XML-based
lightweight C++ fact extractor,” in 11th International Workshop on
Program Comprehension (IWPC 2003), May 10-11, 2003, Portland,
Oregon, USA. IEEE Computer Society, 2003, pp. 134–143.

[8] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval.
Addison-Wesley, 1999.

[9] D. Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedures (fourth edition). Chapman & All, 2007.

[10] A. Bacchelli, M. Lanza, and V. Humpa, “RTFM (read the factual mails)
- augmenting program comprehension with remail,” in Proceedings of
the European Conference on Software Maintenance and Reenginering,
2011, pp. 15–24.

[11] N. Bettenburg, B. Adams, A. E. Hassan, and M. Smidt, “A lightweight
approach to uncover technical artifacts in unstructured data,” in Proceed-
ings of the IEEE International Conference on Program Comprehension,
2011, pp. 185–188.

[12] N. Bettenburg, S. W. Thomas, and A. E. Hassan, “Using fuzzy code
search to link code fragments in discussions to source code,” in 16th
European Conference on Software Maintenance and Reengineering,
CSMR 2012, Szeged, Hungary, March 27-30, 2012. IEEE, 2012, pp.
319–328.

[13] J. Cleland-Huang, O. Gotel, and A. E. Zisman, Software and Systems
Traceability. Springer, February 2012.

[14] M. P. Robillard, R. J. Walker, and T. Zimmermann, “Recommendation
systems for software engineering,” IEEE Software, vol. 27, no. 4, pp.
80–86, July/August 2010.

[15] D. Cubranic, G. C. Murphy, J. Singer, and K. S. Booth, “Hipikat:
A project memory for software development,” IEEE Transactions on
Software Engineering, vol. 31, pp. 446–465, 2005.

[16] A. J. Ko, B. A. Myers, and D. H. Chau, “A linguistic analysis of
how people describe software problems,” in Proceedings of the IEEE
Symposium on Visual Languages and Human-Centric Computing, 2006,
pp. 127–134.

[17] A. J. Ko and P. K. Chilana, “Design, discussion, and dissent in open
bug reports,” in iConference, 2011, pp. 106–113.

[18] L. H. Etzkorn, L. L. Bowen, and C. G. Davis, “An approach to program
understanding by natural language understanding,” Natural Language
Engineering, vol. 5, pp. 1–18, 1999.

[19] L. Tan, D. Yuan, G. Krishna, and Y. Zhou, “/* iComment: Bugs or
bad comments? */,” in Proceedings of the 21st ACM Symposium on
Operating Systems Principles (SOSP07), October 2007.

[20] H. Zhong, L. Zhang, T. Xie, and H. Mei, “Inferring specifications
for resources from natural language API documentation,” Automated
Software Engineering Journal, 2011.

[21] G. Sridhara, E. Hill, D. Muppaneni, L. L. Pollock, and K. Vijay-
Shanker, “Towards automatically generating summary comments for java
methods,” in Proceedings of the IEEE/ACM International Conference on
Automated Software Engineering, 2010, pp. 43–52.

[22] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus, “On the use of auto-
mated text summarization techniques for summarizing source code,” in
Proceedings of the IEEE International Working Conference on Reverse
Engineering, 2010, pp. 35–44.

72

