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ABSTRACT 
A reachability question is a search across feasible paths through a 
program for target statements matching search criteria. In three 
separate studies, we found that reachability questions are common 
and often time consuming to answer. In the first study, we ob-
served 13 developers in the lab and found that half of the bugs 
developers inserted were associated with reachability questions. In 
the second study, 460 professional software developers reported 
asking questions that may be answered using reachability ques-
tions more than 9 times a day, and 82% rated one or more as at 
least somewhat hard to answer. In the third study, we observed 17 
developers in the field and found that 9 of the 10 longest activities 
were associated with reachability questions. These findings sug-
gest that answering reachability questions is an important source 
of difficulty understanding large, complex codebases. 

Categories and Subject Descriptors 
D.2.6 [Software Engineering]: Programming Environments; D.2.7 
[Software Engineering]: Distribution, Maintenance, and En-
hancement.  

General Terms 
Human factors.  

Keywords 
Program comprehension, empirical study, software maintenance, 
code navigation, developer questions 

1. INTRODUCTION 
A central goal of software engineering is to improve developers’ 
productivity and the quality of their software. This requires an 
efficient and effective way to explore code since most developers 
will encounter code with which they are not familiar. Understand-
ing code in modern codebases is challenging because of the size 
and complexity of the codebase, and the use of indirection. For 
example, many modern codebases use callbacks and events to 
connect modules or communicate with external frameworks. 
While use of indirection enables reuse, it also makes understand-
ing relationships between behaviors more challenging. For exam-
ple, an analysis of code in Adobe’s desktop applications found 
that one third of the codebase is devoted to event handling logic 

which in turn caused half of the reported bugs [15]. Successfully 
coordinating dependencies among effects in loosely connected 
modules can be very challenging [5]. 

To better understand how developers understand large, complex 
codebases, we conducted three studies of developers’ questions 
during coding tasks. Surprisingly, we discovered that a significant 
portion of developer’s work involves answering what we call 
reachability questions. A reachability question is a search across 
all feasible paths through a program for statements matching 
search criteria. Reachability questions capture much of how we 
observed developers reasoning about causality among behaviors 
in a program. 

Consider an example from our first study: after proposing a 
change, a developer sought to determine if it would work before 
committing to implementing it. To do so, he wanted to determine 
“all of the events that cause this guy to get updated”. While he 
was aware that a call graph exploration tool could traverse chains 
of method calls, this did not directly help. Upstream from the 
update method was a bus onto which dozens of methods posted 
events, but only a few of these events triggered the update. Exist-
ing call graph tools are unable to identify only those upstream 
methods sending the events triggering the update of interest. Un-
able to answer the question in any practical way, he instead opti-
mistically hoped his guess would work, spent time determining 
how to reuse functionality to implement the change, edited the 
code, and tested his changes before learning the change would 
never work and all his effort had been wasted. 

We found that many of the problems that developers experience 
understanding code arise from difficulties answering reachability 
questions. In a lab study of modifications to complex, unfamiliar 
code, developers often inserted defects because they either could 
not successfully answer reachability questions or made false as-
sumptions about reachability relationships. A survey of develop-
ers that asked about 12 rearchability questions revealed that, on 
average, 4.1 of these were thought to be at least somewhat hard to 
answer. And these questions were not limited to inexperienced 
developers or those new to a codebase: neither professional de-
velopment experience nor experience with their codebase made 
these questions less frequent or easier to answer. Reachability 
questions can be time consuming to answer. In a field study, 
developers often spent tens of minutes answering a single reach-
ability question.  

This paper presents data about reachability questions gathered 
from over 470 developers and over 70 hours of direct observations 
of coding tasks. We first review related work and formally define 
reachability questions. Next, we present the method and results of 
each of three studies in turn and discuss their findings. Finally, we 
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discuss the implications of these findings for helping developers 
more effectively understand code. 

2. RELATED WORK 
It has long been known that control and data flow are central to 
how developers mentally represent programs [3]. Studies of pro-
gram comprehension have found that developers begin under-
standing small programs by constructing a mental model of con-
trol flow [16]. A number of studies have applied the idea of in-
formation foraging to describe how developers navigate code 
[14]. Beginning at an origin method, developers use cues such as 
method names to pick which of many calls to traverse towards 
targets, and remember information they collect [11]. Simulations 
of code navigation have focused on understanding exactly how 
developers decide which calls to traverse. For example, one study 
found that words contained in a bug report were usually sufficient 
to explain which calls developers decide to traverse [14]. Devel-
opers must also remember what they find. Difficulties here have 
been found to lead to information loss, poor representation 
choices, and problems returning to points where information was 
previously found [9]. These studies illustrate the central impor-
tance of navigating and exploring code to coding tasks. 

Several recent studies have observed developers at work in coding 
tasks to identify information needs or questions associated with 
development activities. One study identified 21 questions devel-
opers ask about interactions in code, artifacts, and teammates [10]. 
We believe that one-third of these questions are questions which 
developers might answer by asking reachability questions. Some 
of the other questions were related to communication with team-
mates, maintaining awareness of changes, and reasoning about 
design. Another study identified 44 questions specifically about 
code [17]. They reported that developers refine their questions 
from higher-level questions, such as the implications of their 
changes, into lower-level questions that can be more directly an-
swered using the development environment. Many of the chal-
lenges developers experienced stemmed from problems separating 
task-relevant results from the many task-irrelevant results that the 
tools in the development environment produced. Several of the 
questions they identified were specifically about control or data 
flow. Interestingly, of the questions identified as not well sup-
ported by existing tools, 52% were questions we believe develop-
ers might answer by asking reachability questions. 

Several studies have observed developers using existing tools for 
understanding control flow to produce recommendations for fu-
ture tools that would more effectively support developers’ needs. 
One study observed developers using a UML tool while editing 
code [4]. In addition to identifying several usability problems, a 
key recommendation was to better support selecting task-relevant 
items in the reverse engineered view to prevent wasted time un-
derstanding task-irrelevant items. They also saw the need for 
much more automated support for reverse engineering sequence 
diagrams. Another study failed to find much use of detailed large-
scale maps of code hung on walls near developers’ offices [2]. 
Designed to be useful for all possible tasks, these diagrams had 
both too much and too little information – developers required 
many details but only those that were task-relevant. The authors 
conclude that diagrams providing concise and targeted answers to 
situation-relevant questions were more likely to be useful than 
general-purpose diagrams. Another study observed several stu-
dents using a UML sequence diagram tool in the lab [1]. 
Participants specifically requested the ability to rapidly configure 

the diagram to filter or search for items and to easily hide items 
that were determined to be uninteresting. Overall, these studies 
suggest that developers could benefit greatly from diagrams that 
are more focused on task-relevant items, but the studies provide 
little guidance on what developers find task-relevant. 

Only a few studies have attempted to measure the time developers 
spend on development activities. In one study [18], 8 developers 
were observed for an hour each. They most frequently executed 
UNIX commands, followed by reading the source, loading or 
running software, and reading or editing notes. In a later study, 
developers at Microsoft, when surveyed about their use of time, 
reported spending nearly equal amounts of time communicating, 
understanding, writing new code, editing old code, and on non-
code related activities [13]. Developers reported spending some-
what less time designing, testing, and on other activities. A de-
tailed study of 10 students at work on a lab task found 22% of 
time spent reading code, 20% editing code, 16% navigating de-
pendencies, 13% searching, and 13% testing [9]. Thus, developers 
are spending significant time trying to understand code. 

3. DEFINITIONS 
From preliminary analysis of related work and results from our 
studies, it seemed clear that developers ask a class of questions 
that had not previously been explicitly characterized – reachabil-
ity questions. But exactly which questions do these include? 
While we had many examples, often in developers’ own words, a 
formalism would unambiguously show how each was a reachabil-
ity question and highlight relationships between similar questions. 
So we used our examples to design a formalism for reachability 
questions which we describe here. Although we developed it 
chronologically after the studies, we present it first in this paper to 
use it to describe the questions we observed (see Tables 1 and 2).1 

3.1 Reachability questions 
Intuitively, a reachability question is a search across feasible paths 
through a program for target statements matching search criteria. 
Thus, a reachability question consists of two parts: the paths to 
search and the search criteria specifying the statements to find. 

Reachability questions represent feasible paths as a set of concrete 
traces TR. A concrete trace tr is a list of <s, env> tuples, where s 
is a statement and env maps every variable in s to a value. 
traces(p, O, D, C) is the set of all concrete traces in a program p 
from an origin statement o in the set O to a destination statement d 
in the set D which satisfy all the filtering constraints c in C. O, D, 
and C can be left unspecified by using a ? (although at least one of 
O or a D must be specified). Questions without an origin are 
called upstream reachability questions while questions with an 
origin (and optionally a destination) are downstream reachability 
questions. C is a set of filtering constraints c, where c is a tuple 
<s, x, const> specifying a value for a variable x in s. x and const 
can be left unspecified (?) to find only the traces containing s. 

There are two types of reachability questions: find and compare. 
find SC in TR finds the portion of each tr in the set of traces TR 
that match search criteria SC. A search criteria function, given 
attributes describing a set of statements, generates a set of state-
ments SC. Table 1 lists search criteria functions we observed in 
our studies. A reachability question then matches SC against each 
<s, env> tuple in a trace tr to generate new traces containing only 
                                                                    
1 The formalism was designed with the assistance of Jonathan Aldrich. 
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tuples where s is in SC.  

compare(TRa, TRb) : TRcommon, TR1, TR2 compares sets of traces. 
Compare first, by an unspecified method, attempts to match each 
tra in TRa to a corresponding trace trb in TRb. When such a match 
is found, compare then attempts to match tuples <sa, enva> in tra 
to corresponding tuples <sb, envb> in trb. This generates three new 
lists: trcommon which contains an ordered list of tuples that matched, 
and tr1 and tr2 which contain an ordered list of tuples in tra and trb 
that did not match. TR1 and TR2 also contain traces in TRa and TRb 
for which no match could be found. 

3.2 Comparison to slicing 
Many tools have been designed to help developers explore pro-
grams by finding sets of statements. One technique used by many 
tools is slicing [7][19][21][22]. Slicers find statements connected 
by either data dependencies or control dependencies. Data de-
pendency dDepend(s1, x) finds the set of statements S where each 
s2 in S may have last defined a variable x used in s1. A control 
dependency exists from s1 to s2 if s2 controls if s1 does or does not 
execute. cDepend(s1) finds all such control dependencies of s1. A 
(backward) static slice [22] is simply the transitive closure of the 
union of these two relations: (dDepend(s1, x) ∪ cDepend(s1))*. In  
a highly influential study, Weiser [21] found that developers de-
bugging better remembered a static slice related to the bug than 
either an unrelated slice or an arbitrary portion of the program. 
This suggested that developers follow slices when using the strat-
egy of debugging backwards from an error to a bug.  

Building on this work, many variations on slicing have been pro-
posed [7][20]. A forward slice finds control and data 
dependencies forwards rather than backwards: (fdDepend(s1, x) ∪ 
fcDepend(s))*.  A dynamic slice finds control and data dependen-
cies in a particular execution. Like reachability questions with a 
filtering constraint, conditioned static slices find dependencies 
across paths which satisfy a constraint. A thin slice finds data 
dependencies dDepend(s1, x)* while excluding data dependencies 
at pointer dereferences [19]. A chop intersects statements in a 
forwards slice on x at s1 with a backwards slice on y at s2: (fdDe-

pend(s1, x) ∪ fcDepend(s1))* ∩ (dDepend(s2, y) ∪ cDepend(s2)). 
The central idea of all slicing techniques applied to code explora-
tion is to use control and data dependencies to find statements 
answering a developer’s question. 

Reachability questions differ from slicing in many ways. First, by 
searching over the set of all concrete traces, reachability questions 
exclude infeasible paths. Static slicing techniques are typically 
defined as a may analysis where statements may be dependent 
only through infeasible paths that never execute. However, much 
of the work done on improved slicing has focused on eliminating 
infeasible paths by, for example, introducing context sensitivity 
[20]. Thus, the difference is only that a reachability question 
specifies a fully precise answer whereas slices specify answers of 
any precision. A second difference is that reachability questions 
find portions of traces where statements can occur multiple times, 
while static slicers often find a subset of the program where 
statements occur exactly once. Dynamic slicers search over traces, 
but only a single trace rather than the set of all traces.  

An important difference between reachability questions and slic-
ing is that a reachability question is a search across control flow 
paths rather than dependencies. By design, the set of statements in 
a slice will always be a subset of the statements across control 
flow paths: statements that are not dependent are not included. 
Slices correspond to questions about influence: “Why did this 
execute?” (control dependency), or “Where did this value come 
from?” (data dependency). In contrast, control flow captures ques-
tions about what happens before (“What are the situations in 
which?”) or after (“What does this do?”). When developers ask a 
question about control flow, the slice may not include the state-
ments answering their question. And while our reachability ques-
tion formalism includes searches for data dependencies, we ob-
served only 1 example of such a question out of the 17 important 
reachability questions we found (tables 2 and 3). 

The most important difference between slicing and reachability 
questions is that a reachability question is a search for a set of 
statements described by any of a wide variety of search criteria. 
Consider an example from study 1: a developer wondered why 
calling a method m is necessary. The reachability question find 
ends in traces(jEdit, mstart, mend , ?) identifies a few statements (5 
at a call depth of 5 or less from mstart) while a static slice from 
mstart finds all of the statements in hundreds of methods. Because 
the first line of m conditionally throws an exception depending on 
the input to m, everything afterwards is control dependent on the 
input to m. If this were not the case, the static slice still would not 
help locate ends and might not even include these statements if 
they do not happen to be control or data dependent. Even the 
searches supported by chopping are different: in chopping, both 
the origin and target statement are supplied by the user. Thus, the 
user must already know the statements in ends when they ask a 
chop question. 

4. STUDY 1 – LAB OBSERVATIONS 
In a previous study [12], we observed 13 developers at work on 
two 1.5 hour long changes to an unfamiliar codebase. We reported 
that experienced developers used their more extensive knowledge 
to diagnose the problem and formulate a fix addressing the under-
lying cause of the design problem rather than simply its symptoms 
[12]. Here we reanalyzed this study’s data and report several new 
findings. Despite spending almost the entire task asking questions 
and investigating code, developers frequently incorrectly under-

Function Finds the set of statements that: 

grep(str) include text matching the string str  

reads(F), 
writes(F) 

read / write a field f in the set of fields F. 
FIELDS is the set of all fields in the program. 

stmts(T)  are in a type t in the set of types T 
stmts(M) are in a method m in the set of methods M 
callers(M) are callsites of a method m in the set of meth-

ods M 
callees(M) are method declaration statements of methods 

invoked by a method m in the set of methods 
M 

ends are method calls to framework methods with-
out source or method declaration statements 
with no callers which may be callbacks 

dDepend(s, x) x in s has a data dependency on. dDepend(s, 
x)* finds the transitive closure including tran-
sitive data dependencies. 

Table 1. Search criteria functions describing statements for 
which developers searched (see tables 2 and 3). 
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stood facts about the code. Acting on these false facts, developers 
implemented buggy changes, which in some cases they later real-
ized were mistaken and abandoned. When developers inserted 
defects, we analyzed questions developers asked and actions they 
took to look for specific information they incorrectly understood. 
In other cases, developers spent tens of minutes employing tedi-
ous strategies. We report several of these strategies and questions 
they attempted to answer. 

4.1 Method 
We review the most important aspects of the method here. Addi-
tional details can be found in [12]. Participants were provided 
with the Eclipse 3.2.0 IDE and were allowed to use any Eclipse 
feature and take notes with Windows Notepad or on paper. Par-
ticipants worked on two code-change tasks for 1.5 hours per task. 
Both tasks were changes to jEdit, an open source text editor that is 
54,720 non-comment, non-blank lines of Java. Both tasks were 
designed to be challenging and require understanding the design 
of the code rather than just locating features or reusing an API. To 
achieve these goals, we designed both tasks to require fixing de-
sign problems. We searched the current version of the application 
for “HACK” comments and selected two problems. Both tasks 
involved editing code that controlled when updates happened and 
involved reasoning about related functionality scattered across the 
codebase. Participants found the tasks to be highly challenging – 
one participant described them as typical of a “bad day”. 

We conducted two new analyses of this data. First, we identified 
edits to the code and clustered these into changes. We labeled 
each change as to if it had been implemented, if it was later aban-
doned, and if it contained a bug. For changes containing a bug, we 
then looked to see if the developer had either asked a question or 

had otherwise made an assumption. We then attempted to deter-
mine if the question or assumption could be addressed by a reach-
ability question. In a second analysis, we looked for examples of 
time-consuming questions that developers spent ten or more min-
utes answering.  

4.2 Results 
Developers implemented an average of 1.2 changes per task. De-
velopers abandoned changes when they learned their changes 
could never work, found a bug they could not fix, or decided they 
did not have sufficient time to finish the change. Developers 
abandoned an average of 0.3 changes per task, two thirds of which 
contained bugs. Developers abandoned changes that did not con-
tain a bug either because they no longer thought the change was a 
good design or did not think they had time to finish it. Overall, 
developers spent over two-thirds of their time (68%) investigating 
code – either testing or doing dynamic investigation using the 
debugger (22%) or reading, statically following call relationships, 
or using other source browsing tools (46%). They spent the re-
mainder of their time editing (14%), consulting or creating other 
artifacts (task description, notes in Notepad, diagrams)(6%), or 
reasoning without interacting with any artifacts (11%). 

4.2.1 Causes of defective changes 
Half of all changes developers implemented contained a bug. In 
half of these defective changes (8 changes), we were able to relate 
the bug to a reachability question either in a false assumption that 
developers made (75%) or a question they explicitly asked (25%). 
Table 2 lists the false assumptions or questions that were related 
to reachability questions and the corresponding reachability ques-
tion. Developers often made incorrect assumptions about up-
stream or downstream behaviors as they reasoned about the impli-

False assumption or  
question related to a bug 

Correct answer Related reachability  
question 

Dist Notes 

Method m is fast enough that 
it does not matter that it is 
called more frequently. 

This method sends an event 
which triggers a hidden call 
to an extremely expensive 
library function. 

find ends in 
  traces(jEdit, mstart, mend , ?) 

4 Finds calls to downstream  
library functions in m 

Why is calling m necessary?  m determines if the screen 
needs to be repainted and 
triggers it if necessary. 

find ends in  
   traces(jEdit, mstart, mend , ?) 

5 Finds calls to library functions, 
including one that triggers 
screen repainting 

From what callers can the 
guards protecting statement d 
in method m be true? 

More than one caller can 
reach d. 

find callers(m) in 
   traces(jEdit, ?, d, ?) 

1 Finds callers reaching d 

Method m need not invoke 
method n as it is only called 
in a situation in which n is 
already called. (2 bugs) 

Method m is called in sev-
eral additional situations. 

find callers(m) in 
   traces(jEdit, ?, m, ?) 

1, 2 Finds callers reaching m 

The scroll handler a does not 
need to notify b, because b is 
unrelated to scrolling.  

Method b updates the 
screen to reflect updated 
scroll data signaled by a.  

find grep(“scroll”) in  
    traces(jEdit, astart, aend, ?)        
    

1 Finds statements in b that reads 
scroll data updated when a 
occurs 

Removing this call in m does 
not influence behavior down-
stream. 

m no longer clears a flag, 
disabling functionality 
downstream 

compare( 
  traces(jEditold, mstart , ?, ?),  
  traces(jEditnew, mstart , ?, ?) 

4 Finds differences in behavior 
resulting from the change, in-
cluding downstream functional-
ity that is no longer invoked. 

What situations currently 
trigger this screen update in 
m?  

A variety of user input 
events eventually cause m 
to be invoked 

find ends in  
    traces(jEdit, ?,  m, ?) 

3 Finds upstream methods with 
no callers, including user input 
event handlers called only by 
the framework. 

Table 2. Questions developers failed to answer or false assumptions developers made in study 1 that are (1) associated with an 
implemented change containing a defect and are (2) associated with a reachability question. For each reachability question, Dist is 
the shortest call graph distance between the origin statement developers investigated and any statement found by the reachability 
question. 

188



 

cations of removing calls currently present in the code. These 
assumptions took different forms depending on the change they 
considered. upstream often occurred when developers asked or 
assumed that behavior was redundant and unnecessary because it 
would always be called somewhere else. In these cases, the call 
graph distance from the origin statement they were investigating 
to target behavior was often small (mean = 1.75). These questions 
were challenging to reason about because it was difficult to de-
termine which calls were feasible. In contrast, downstream often 
occurred when developers made false assumptions about how a 
method mutated data or invoked library calls. Here, the relevant 
effect was further away (mean = 3.5 calls), and developers had no 
reason to believe that traversing the path to the target would chal-
lenge their assumption. 

4.2.2 Tedious and time consuming strategies 
In addition to the bugs that arose from assumptions developers 
made when they should have asked reachability questions, there 
were many cases where the developers did ask reachability ques-
tions and formulated a strategy to answer them. Developers spent 
much of the task investigating code by traversing calls in an at-
tempt to understand what methods did and the situations in which 
they were invoked. Most participants rapidly switched between a 
call graph view (static) and the debugger call stack (dynamic). 
Static investigation allowed developers to navigate to any caller or 
callee at will. But as developers traversed longer paths of calls, 
developers were likely to hit infeasible paths. Several guessed 
incorrectly about which paths were feasible. Dynamic investiga-
tion was more time-consuming to begin – developers set break-
points, invoked application behavior, and stepped through break-
point hits until the correct one was reached. At task start, most 
investigation was relatively unfocused – developers attempted to 
make sense of what the methods did and the situations in which 
they were called. As the tasks progressed and developers began to 
propose changes, the questions grew increasingly focused and 
developers sought to navigate to specific points in code.  

Developers differed greatly in the effectiveness and sophistication 
of the strategies they employed. Particularly challenging for many 
participants was upstream navigation. Two participants did not 
realize they could search the call stack to find an upstream method 
and instead spent much time (16 mins, 10 mins) locating the 
method by using string searches and browsing files. Three partici-
pants spent ten or more minutes (17, 13, and 10 mins) using a 
particularly tedious strategy to navigate upstream from a method 
m across only feasible paths: adding a breakpoint to each of m’s 
callers, running the application, executing functionality, noting 
which callers executed, and recursing on these callers. Many par-
ticipants used Eclipse’s call graph exploration tool to traverse 
calls, but both traversed infeasible paths and experienced prob-
lems determining which calls led to their search targets (figure 1). 
The three most experienced participants instead invoked function-
ality and copied the entire call stack into a text editor. But even 
these experienced participants experienced problems reasoning 
about reachability relationships. Three of the defects inserted 
associated with reachability questions were inserted by these par-
ticipants. 

4.3 Discussion 
Despite spending much of the task investigating code, developers 
were often unsuccessful in correctly understanding what it did. 
Developers made many false assumptions about relationships 
between behaviors that in some cases led to defects. Developers’ 

tools were ill-suited for answering reachability questions, often 
forcing them to use tedious and time-consuming strategies to an-
swer specific well-defined questions. And had developers been 
able to more easily check their erroneous assumptions that led to 
defects, their changes might have been more accurate. 

While these results suggest that reasoning about reachability rela-
tionships is important for developers understanding unfamiliar, 
poorly designed code, these results might not be generalizable. 
While we expect developers do work with such code in the field, 
it is unclear how typical such a task is. While the carefully con-
trolled setting of a lab study allowed us to evaluate the success 
and accuracy to a degree impossible in the field, lab studies are 
never able to perfectly replicate conditions in the field. Under-
standing real code in more typical tasks might involve fewer and 
less challenging reachability questions. Developers working in the 
same codebase over a period of time might be able to use their 
knowledge to directly answer reachability questions as studies 
suggest developers learn facts including callers and callees of 
methods with increasing experience [V]. Developers had limited 
time in which to work, which likely led them to rush changes with 
less investigation than they might otherwise have done. And sev-
eral developers did not seem to have had much experience under-
standing large, complex codebases. Are reachability questions 
frequent and challenging for developers at work in the field? 

5. STUDY 2 – SURVEY 
In order to understand the frequency and difficulty of reachability 
questions in the field, we conducted a survey of developers in 
which they rated 12  questions for difficulty and frequency.  

5.1 Method 
We randomly sampled 2000 participants from among all employ-
ees at Microsoft’s Redmond campus listed as a developer in the 
address book. Each was sent an email inviting them to participate 

 
Figure 1. Developers using Eclipse’s call graph exploration 
tool to traverse callers found it difficult both to identify feasi-
ble paths and those leading to their target. These methods are 
shaded, but the actual target is several levels further away 
behind several methods with high branching factors. 
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in our survey. We received 460 responses from developers and 
excluded 8 additional responses from non-developer positions. 
Respondents included 14 architects, 43 lead developers, and 403 
developers. Most worked in a single or shared office while a small 
number (33) worked in an open, shared space. Respondents 
ranged in professional software development experience from the 
very inexperienced (0 years) to the very experienced (39 years), 
with a median of 9 years experience. Respondents frequently 
changed codebases, ranging in time spent in their current code-
base from 0 to 8.33 years, but with a median of only 1 year. Nev-
ertheless, 69% agreed that they were “very familiar” with their 
current codebase. Developers’ teams were involved in a wide 
range of activities – 43% bug fixing, 34% implementation, 16% 
planning, and 7% other. Developers reported that they typically 
spent 50% of their work time editing, understanding, or debug-
ging code, with a range from 0 to 100%. 

In the main portion of the survey, developers were asked to rate 
the frequency and difficulty of 12 questions. These questions were 
selected from a previous study of questions that developers ask 
about code [17] and questions identified in our first study. Some 
of these were closely related to reachability questions (“In what 
situations is this method called?”) while others were more indi-
rectly related (“What are the implications of this change?”). How-
ever, we observed many of the indirectly related questions being 
refined into reachability question in our lab study. So, we 
hypothesized that developers often answer these questions by 
asking reachability questions. 

We piloted the survey with 4 graduate students and 1 developer to 
ensure that the meaning of the questions was clear, and we iter-
ated the wording based on the feedback. For each question, re-
spondents were asked to rate how often in the past 3 days of pro-
gramming they had asked the question and to rate its difficulty on 
a 7 point scale from very hard to very easy. 56 participants did not 
answer all questions. When a participant did not answer the ques-
tions necessary for a particular comparison, that participant was 
dropped from that comparison. To analyze the data, we looked 
both at simple descriptive statistics and correlations between rat-
ings and demographic variables. We report these results using r 

(the Pearson product-moment correlation coefficient) and p (a 
statistical significance measure – smaller is more significant). 

5.2 Results 
On average, developers reported asking more than 9 of these 
questions every day. These questions were often hard to answer. 
Of the 12 questions that the developers rated, developers rated an 
average of 4.1 questions at least somewhat hard to answer and 1.9 
as hard or very hard to answer. Few developers thought all these 
questions were easy to answer: 82% of respondents rated at least 1 
question at least somewhat hard to answer, and 29% rated at least 
1 question as very hard to answer. Surprisingly, developers do not 
ask these questions significantly less frequently and they are not 
significantly easier to answer as they become more experienced (r 
= -.07, p = .14; r = -.01, p = .81) or after spending more time in a 
codebase (r = -.04, p = .41; r = -.07, p = .15). Nor does the quality 
of the codebase significantly affect the frequency of these ques-
tions (r = -.08, p = .10). While it is harder to answer these ques-
tions on lower quality code (r = .36, p < .0001), it is not possible 
to say if this is unique to these questions or simply that all ques-
tions become harder to answer in poorly maintained code. 

Figure 2 plots the questions’ frequency against difficulty. Interest-
ingly, difficulty was positively related to frequency (r = .35, p < 
.0001). Both the most frequent and hardest to answer question was  
“What are the implications of this change?” Generally, the most 
frequent and difficult questions were the most high level. For 
example, half of respondents reported asking “What are the impli-
cations of this change?” at least twice a day, and 63% of respon-
dents rated it at least somewhat difficult to answer. Of course, 
some questions are much more frequent and difficult than others. 
Over 60% of developers thought answering “What are the impli-
cations of this change?” was usually at least somewhat hard to 
answer, while this was true of only 16% of respondents for “How 
are instances of these classes or data structures created and as-
sembled?” 

5.3 Discussion 
Our results revealed that developers frequently ask questions that 
they might refine into reachability questions, that these questions 
are often difficult to answer, and that experience does not remove 

 
 
 Figure 2. Frequency vs. difficulty for 12 reachability-related questions sorted by decreasing difficulty. 
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1. What are the implications of this change? 
(e.g., what might break)
2. How does application behavior vary in these different situations 
that might occur?
3. Could this method call potentially be slow in some situation 
I need to consider?
4. To move this functionality (e.g., lines of code, methods, files) to 
here, what else needs to be moved?
5. Is this method call now redundant or unnecessary in this situation?
6. Across this path of calls or set of classes, where should 
functionality for this case be inserted?
7. When investigating some application feature or functionality, how
is it implemented?
8. In what situations is this method called?
9. What is the correct way to use or access this data structure?
10. How is control getting (from that method) to this method?
11. What parts of this data structure are accessed in this code?
12. How are instances of these classes or data structures
created and assembled?
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the need to ask these questions. These results suggest that answer-
ing these questions is an important part of how all developers 
understand code, whether they are new to a codebase or know it 
well and whether the codebase is poorly designed or well de-
signed. These findings are still limited in that all survey respon-
dents were taken from a single company. But respondents differed 
greatly by the products on which they worked, by experience with 
the codebase, by overall professional experience, and by software 
project phase. These results demonstrate that techniques that help 
developers more effectively answer these questions are important. 
However, the results do not establish that developers answer these 
questions by asking reachability questions. Do developers fre-
quently ask reachability questions, and are they time consuming to 
answer? What do examples of reachability questions in the field 
look like? 

6. STUDY 3 – FIELD OBSERVATIONS 
In order to better understand the situations in which developers 
ask reachability questions and the strategies they use to answer 
them, we observed 17 developers at work on their everyday cod-
ing tasks.  

6.1 Method 
We recruited 20 developers at Microsoft from respondents to 
study 2 to participate in observation sessions. All sessions were 
conducted with a single observer and a single developer in the 
developer’s office. Developers used a variety of programming 
languages (C++, C#, JavaScript), editors, and debuggers. After 
briefly introducing the observer and reviewing the purpose of our 
study, participants were asked to work on a coding task in their 
codebase for the remainder of the approximately 90 minute ses-
sions. Three participants finished their first task and chose a sec-
ond task. When selecting tasks, participants were encouraged to 
choose a task involving unfamiliar code, minimally defined as 
code they had not written themselves. While only 35% of the 
tasks that developers chose were tasks they planned to do at the 
time of our session, 95% (all but one) of the tasks they chose were 
on their lists of tasks to do. The remaining task was a bug previ-
ously assigned to another team-member. The work we observed 
was not biased towards the beginning or the end of tasks: 45% of 
the tasks were tasks the developer had previously begun, and de-
velopers completed 45% of their tasks. All but one developer 
stopped working after they had completed testing their fix and 
before having their teammates code-review the change. 

We asked participants to think aloud as they worked. When 
deeply engrossed in the tasks, participants occasionally forgot to 
talk, and we prompted them to resume by asking what they were 
trying to do or having them confirm or reject a statement about 
what they appeared to be doing. To record the sessions, we re-
corded audio and took notes. Two of the recordings were lost due 
to equipment failure, leaving 18 participants. From the recordings 
and observer notes, we produced time stamped, annotated tran-
scripts of the sessions spanning 386 pages. 

To analyze the data, we first reviewed the transcripts and qualita-
tively summarized what developers were doing. Next, we itera-
tively designed a coding scheme for describing developers’ activi-
ties. We coded 17 of the 18 sessions – one session did not include 
any implementation task. Each session was coded for activity at 
one-minute time granularity. Participants occasionally retrospec-
tively described particularly memorable past tasks or talked about 
how they approached tasks in general which we did not include in 

the activity list, but mention in the discussion section. Developers 
were interrupted by replying to task-unrelated emails, by team-
mates dropping by, or discussions with the interviewer. All task-
irrelevant activity was coded as an interruption and excluded from 
the analysis of time use. Due to equipment failure, we lost 15 
minutes of the recordings out of a total of 962 minutes of task-
related activity. In most cases, developers stopped working on 
their tasks once they had completed its implementation. But one 
developer reached the end of his task and conducted a code re-
view. So we do not include code reviews in our activity times.  

6.2 Results 
Developers spent a majority of their time understanding code by 
debugging (33%) or proposing changes and investigating their 
implications (28%). 9 of the 10 longest debugging and implication 
investigations were associated with a reachability question.  

6.2.1 Activities 
Figure 3 depicts the sequence of activities we observed and the 
time developers spent on each. When working on a bug they did 
not already understand, developers first sought to reproduce the 
problem by following steps in the bug to confirm that the bug had 
not already been fixed, ensure that a fix could be tested, and pro-
vide a way to begin using the debugger. Developers faced with 
incorrect application behavior, either from the original bug or 
introduced by their fix, debugged to assign blame to specific pro-
gram points exhibiting incorrect behavior. After determining the 
cause of a bug or when beginning a feature implementation task, 
developers began to propose fixes to solve the problem and inves-
tigated the implications of the proposals on program behavior. 
Developers then edited the code to implement the change.  When 
editing, developers sometimes reused existing functionality and 
sought to learn its name and how to correctly reuse it. Developers 
compiled and built the application, sometimes producing compile 
errors they debugged. Finally, developers tested their changes, 
often revealing defects they debugged.  

6.2.2 Time-consuming activities 
While debugging and investigating code, developers frequently 
asked reachability questions. In order to examine the relationship 
of these activities to reachability questions, we looked for reach-
ability questions in the 5 longest debugging and 5 longest investi-
gation activities. Each of these activities had a central, primary 
question developers tried to answer throughout the activity. Sur-
prisingly, the primary question in 9 out of 10 of these activities 

 
Figure 3. Developers’ activities (circles with % of activity time) 
and transitions between activities (lines with % of transitions 
from activitiy). Transitions from an activity are in the activ-
ity’s color, and left to right transitions are above right to left. 
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was a reachability question. At the beginning of these activities, 
developers rapidly formulated a specific question expressing 
search criteria describing statements they wished to located. For 
example, to debug a deadlock, a developer began at a statement 
and began traversing callees in search of statements acquiring 
resources. 51 minutes later, this finally revealed the sequence of 
behaviors causing the deadlock. 

When answering reachability questions, developers explored the 
code either dynamically using the debugger and logging tools or 
statically using source browsing tools. Interestingly, developers 
did not primarily use the debugger to debug and code browsing 
tools to investigate implications. Instead, like the lab study par-
ticipants, developers often made use of both tools as they sought 
to answer multiple lower-level questions or tried alternative 
strategies for answering their primary question. Developers con-
stantly dealt with uncertainty during their tasks both from generat-
ing and testing hypotheses and wondering about the correctness of 
results produced by their tools. 

An example from the longest debugging activity helps illustrate 
several of these points. Observing an error message in a running 
application, one developer spent 66 minutes locating the cause of 
the error message in the code. Using knowledge of the codebase, 
he rapidly located the code implementing the command he had 
invoked in the application. But it was not obvious where it trig-
gered the error. Hoping to “get lucky”, he did a string search for 
the error message but found no matches. Unsure why he did not 
find any matches, he next began statically traversing calls from 
the command method in search of the error. But he rapidly deter-
mined he was unsure which path would be followed when the 
command was invoked. Switching to the debugger, he stepped 
through the code until learning his project was misconfigured and 
creating spurious results both in his debugger and code searches. 

After resetting his project configuration, he again did a string 
search for the error string and found a match. However, many 
callers called the method, any one of which might be causing his 
error. So he returned to stepping in the debugger. Finally locating 
code that seemed relevant, he quickly browsed through the code 
statically. Finally, he returned to the debugger to inspect the val-
ues of some variables.   

6.3 Discussion 
In the third study, developers spent over half of their time debug-
ging or reasoning about the implications of their changes. In 9 of 
the 10 most time-consuming activities, the developer’s primary 
question was a reachability question. Developers were at a point 
in code and had specific search criteria describing the statements 
they wished to find. But finding these statements was hard and 
time consuming as developers searched through large amounts of 
task-irrelevant code. In contrast to results from study 1, the ques-
tions in study 3 were all questions developers explicitly asked.  

Like all studies, these findings may have been influenced by the 
practices and tools that developers used that might differ in other 
organizations. In organizations with more extensive documenta-
tion or commenting processes, developers might rely on these 
more than the code itself. Developers did not have access to so-
phisticated UML reverse-engineering tools. None of our develop-
ers had unit tests extensive enough to rely on to test the correct-
ness of their changes. Extensive unit tests might lead to more 
implementation of speculative changes, followed by testing, rather 
than extensive investigation prior to changes. 

7. GENERAL DISCUSSION 
We found that reachability questions are frequent, often hard to 
answer, associated with false assumptions that lead to bugs, and 
asked by developers in many of the most time consuming debug-

Developer’s primary question 
(Debugging activities) 

Time 
(min) 

Reachability question Notes 

Where is method m generating an error? 66 find grep(errorText) in 
     traces (p, mstart , mend , ?) 

Finds the statement downstream from m 
outputting error text 

What resources are being acquired to cause 
this deadlock? 

51 find ACQUIRE_METHODS in 
  traces (p, o, d, ?)  

Finds calls to methods acquiring resources, 
including those leading to the deadlock. 

“When they have this attribute, they must 
use it somewhere to generate the content, so 
where is it?”  

35 find reads(attribute) in  
  traces(p, o, d, ?)   

Finds downstream uses of attribute, includ-
ing those generating the content.  

“What [is] the test doing which is different 
from what my app is doing?”  

30 compare(traces(ptest , o, d, ?),        
  traces(papp , o, d, ?)) 

Finds differences in behavior between the 
test program and app program 

How are these thread pools interacting? 19 find methods(T) in 
  traces(p, o, d, ?) 

Finds any calls into methods in thread pool 
types T. 

 

Developer’s primary question 
(Investigation activities) 

Time 
(min) 

  Reachability question Notes 

How is data structure struct being mutated in 
this code (between o and d)?  

83 find writes(struct) in traces(p, o, d, ?)     Finds all downstream statements mutating 
struct  

“Where [is] the code assuming that the tables 
are already there?” 

53 compare(traces(p, o, d, tablesLoaded), 
    traces(p, o, d, tablesNotLoaded)) 

Finds different behaviors the code exhibits 
when tables are not loaded 

“How [does] application state change when m 
is called denoting startup completion?” 

50 find writes(FIELDS) in 
   traces(p, mstart , mend , ?)    

Finds state changes caused by m 

“Is [there] another reason why status could be 
non-zero?”  

11 find dDepend(status) in 
   traces(p, ?, d, ?) 

Finds upstream statements through which 
values flow into status, including those creat-
ing its values 

Table 3a (top) and 3b (bottom). The 5 of the 5 longest debugging activities and the 4 of the 5 longest investigation activities associ-
ated with a reachability question. For each activity, the developer’s primary question during the activity, the length of the activity, 
and the related reachability question.  
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ging and investigation tasks. Several developers in the lab study 
became so overwhelmed investigating code that they gave up. 
Developers at work on actual tasks in the field often spent tens of 
minutes answering single reachability questions when debugging 
or investigating the implications of their changes. In all of these 
cases, developers asked questions and explored the code to search 
for statements answering their questions. Linking many of the 
diverse problems developers commonly experience understanding 
large complex codebases to reachability questions helps better 
explain the strategies developers use to understand code and the 
factors influencing their success or failure. 

7.1 Strategies for answering reachability 
questions 
Developers may choose from among several classes of strategies 
for answering questions: reasoning using facts they already know, 
communicating with teammates, or dynamically or statically ex-
ploring code. For code that developers know well, developers may 
already know the answer [6]. But this level of understanding is 
difficult to achieve due both to the number of reachability rela-
tionships present in a codebase and because they often change as 
developers edit the code. One field study participant spent several 
minutes investigating code he had written himself a little over a 
year earlier because he was not certain of several important details 
unique to his task and he was concerned others might have edited 
the code. Conversely, even developers new to a codebase are able 
to generate hypotheses about reachability relationships by inter-
preting identifiers and using their knowledge about how they ex-
pect an application to work. Study 1 participants assumed that an 
EditBus was connected to edit events. But when developers 
wished to test these hypotheses, they used other strategies. 
Developers communicate with their teammates both directly 
through face-to-face communication, instant message, or email 
and indirectly through documentation and comments. Where they 
exist, documentation diagrams such as UML sequence diagrams 
could help answer some reachability questions provided they an-
ticipate the correct question. But nearly all of the questions we 
observed were highly specific to the developers’ task making it 
unlikely for that such a diagram would exist. Developers occa-
sionally made use of direct communication, often instant messag-
ing teammates they thought might know all or part of an answer. 
But teammates often were not available to immediately respond. 
Moreover, for longer face-to-face interruptions, developers are 
sometimes expected to have already done due diligence to get a 
general understanding before asking a lengthy question of a busy 
and more knowledgeable teammate [13]. Of course, teammates 
also eventually leave the team, may be otherwise unavailable, 
might have forgotten the answer, or might never have known the 
answer at all. 

Thus, developers often answered reachability questions by explor-
ing the code. In dynamic exploration, developers run the program 
and observe its output either directly or through tools such as a 
breakpoint debugger, logging statements, or logging tools. In 
some cases, generating the trace to be dynamically investigated 
was difficult or impossible because special hardware was re-
quired, it took a long time for the application to run and generate 
the trace, or it was unclear what application input was necessary 
to generate the trace. A developer in study 3 working with a web 
application added logging statements before waiting a day for it to 
execute a lengthy batch job. Moreover, some reachability ques-
tions forced consideration of all possible traces. Developers some-

times randomly invoked application behavior in an attempt to 
generate desired traces. When possible, there were several advan-
tages of dynamic exploration. Developers could inspect state and 
even mutate state to select the trace being followed. Breakpoints 
allowed developers to search for paths to a statement. But setting 
breakpoints was impractical when searching for many statements 
(e.g., any method in a type) or when developers did not know the 
statements for which they were searching (e.g., all statements 
related to scrolling).  

Some of the problems we observed in the lab study could be at-
tributed to a lack of knowledge of effective dynamic investigation 
strategies. Developers exploring upstream by iteratively setting 
breakpoints could have instead much more effectively inspected 
call stacks. However, developers devising and choosing strategies 
must simultaneously hypothesize answers to their questions, keep 
track of the question they are answering and information they 
have found, and deal with frequent interruptions from teammates 
[10]. In these situations, developers may not have time to reflect 
at length on their strategies. However, better educating developers 
about the types of questions they ask and the strategies they could 
use to answer them might help them devise more effective code 
exploration strategies.  

7.2 Challenges statically exploring code 
In static exploration, developers navigate the code by using source 
browsing tools such as a call graph exploration tool or textual 
searches for names. In contrast to dynamic exploration, static 
exploration does not require running the program. Call graph 
tools, such as the Eclipse call hierarchy, allow developers to fol-
low chains of calls through the source. However, we observed 
many cases where these chains contained infeasible paths that 
could never execute. Infeasible paths are caused by correlated 
conditionals where the branch taken at a (consumer) conditional is 
correlated to one of several producers controlled by the path by 
which the consumer was reached. Through our direct observations 
and retospective accounts from our participants, we discovered 
several idioms that created correlated conditionals with widely 
separated producers and consumers that were particularly difficult 
to statically explore. In an event bus architecture, messages are 
created by a producer, sent over a bus, and subscribed to by con-
sumers. In COM, a pointer is initialized to a particular implemen-
tation of an interface (producer) and passed to call sites invoking 
methods on the interface (consumer). In frameworks, clients often 
register their implementations of framework interfaces with the 
framework (producer) which then uses dynamic dispatch (con-
sumer) to transfer control back. In a property system, values refer-
ring to properties are created (producer) and used to access prop-
erty getters or setters which look up the property (consumer).  

Several, but not all, of these idioms often produce high branching 
factors in the control flow graph. A common interface (e.g., IRun-
nable in Java) may have many implementations, creating a large 
branching factor at dynamic dispatch. In an event bus, many 
methods call the bus send method and many bus receive methods 
are called by the bus, creating two high branching factors. For the 
developer, the effect of correlated conditionals is to create many 
possible edges to traverse, forcing the developer to guess which 
are feasible or attempt to manually simulate control flow by 
propagating data over control flow paths. We observed that per-
forming path simulation manually was nearly impossible for 
statements with high branching factors as there were simply too 
many paths to consider. 
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7.3 Recommendations for tools 
We found that developers often had specific search criteria 
describing statements they wished to find. However, most existing 
tools force developers to guess where these statements might be 
located when they traverse calls statically or dynamically. Re-
cently, a few tools have begun to support searching. In Dora [8], a 
developer specifies an origin method and a string search criteria, 
and Dora scores methods connected by a call graph path by their 
relevancy to the search string. However, Dora does not eliminate 
infeasible paths and supports only searches described by string 
(grep(str) in our formalism), not attributes of target statements. 
The OASIS Sequence Explorer [1] depicts a trace in a UML se-
quence diagram and allows developers to use a regular expression 
to search for method names. Our findings suggest improved tools 
could greatly improve developer productivity by supporting 
searches across feasible paths for statements matching a wider 
variety of search criteria. 

8. CONCLUSIONS 
Modern development environments provide developers with a 
debugger and source browsing tools for exploring code. But we 
found that these tools only indirectly answer many of the ques-
tions developers ask or should have asked. Better educating de-
velopers about reachability questions might help developers learn, 
share, and choose more effective strategies for answering reach-
ability questions. But our results also suggest that developers 
could perform coding tasks more quickly and accurately with 
tools that more directly support answering reachability questions. 
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