
Collective Code Bookmarks for Program Comprehension

Anja Guzzi∗, Lile Hattori§, Michele Lanza§, Martin Pinzger∗ and Arie van Deursen∗
∗ Delft University of Technology, The Netherlands

§ REVEAL @ Faculty of Informatics, University of Lugano, Switzerland

Abstract—The program comprehension research community
has been developing useful tools and techniques to support
developers in the time-consuming activity of understanding
software artifacts. However, the majority of the tools do not
bring collective benefit to the team: After gaining the necessary
understanding of an artifact (e.g., using a technique based on
visualization, feature localization, architecture reconstruction,
etc.), developers seldom document what they have learned, thus
not sharing their knowledge. We argue that code bookmarking
can be effectively used to document a developer’s findings, to
retrieve this valuable knowledge later on, and to share the
findings with other team members.

We present a tool, called POLLICINO, for collective code
bookmarking. To gather requirements for our bookmarking
tool, we conducted an online survey and interviewed profes-
sional software engineers about their current usage and needs
of code bookmarks. We describe our approach and the tool
we implemented. To assess the tool’s effectiveness, adequacy,
and usability, we present an exploratory pre-experimental user
study we have performed with 11 participants.

I. INTRODUCTION

Software engineers are often faced with the challenge
of understanding a program written by someone else and
a long time ago. Due to the lack of proper documenta-
tion, program comprehension may take over 60% of the
software maintenance effort [5]. Program comprehension
methods and techniques can have a significant impact on the
overall efficiency of software developers. However, program
comprehension is an individualistic and ephemeral activity.
Developers create their mental models of the system [16] to
perform a task, but seldom document them, i.e., most of the
knowledge gained during the comprehension activity resides
only in the developer’s mind and typically is forgotten once
the maintenance task is completed. Several barriers prevent
developers from documenting their findings, such as constant
interruptions, outdated documents that are hard to update,
and preference for face-to-face talks [9].

“Traditional” code bookmarking is a common practice
among users of modern Integrated Development Environ-
ments (IDEs), such as Visual Studio, Eclipse and IDEA.1

Examples of bookmarks include task markers (//TODO and
//FIXME), tag annotations (@Task), and cross-reference
hyperlinks [14]. They have been used to remind developers
of unfinished work [14], which serves a short-term purpose;
and to guide programmers to perform a task [4], [7], [11].

1See microsoft.com/visualstudio, eclipse.org/, jetbrains.com/idea/

Most of these bookmarks are embedded in the code, which
introduces a trade-off between the benefits of sharing and
the drawbacks of having “noise” in the code.

We propose an approach for micro-documentation and
knowledge sharing: collective code bookmarks. It encourages
developers to bookmark artifacts while investigating the
source code, and to document their findings with a description
associated to a bookmark, which can be shared with other
team members or maintained on the developer’s workspace
for private use. A collective code bookmark is a link from
a specific location in a file to one or more descriptions,
which may be comments, links to resources, documents,
websites, and tags. Extra information can be associated with
a bookmark, such as author, creation date, etc. Our goal is
to support the benefits of collective code bookmarks, and
keeping them as an external documentation.

We conducted a survey on the current usage of code
bookmarks, as well as interviews with professional software
engineers, to gather the requirements for collective code
bookmarks and for a supporting tool to encourage developers
to document their findings while performing a program
comprehension task. Based on this survey, we present an
approach for collective code bookmarks with the goal of
helping developers to retain and share the knowledge acquired
during program comprehension activities.

The contributions of this paper are:

• The elicitation of requirements for a non-intrusive
bookmarking tool that facilitates knowledge sharing.
This elicitation is the outcome of an online survey on
current usage of code bookmarks, and several interviews
conducted with professional software engineers.

• An approach to code bookmarking. We devised our
approach as a publicly available tool named POLLICINO.
We present our approach and describe the tool.

• An exploratory pre-experimental user study with 11
participants to investigate the potential of collective
code bookmarks and to evaluate the tool’s effectiveness,
adequacy, and usability; with promising preliminary
results.

Structure of the paper. Section II presents the related
work on code bookmarks. We motivate our work in Sec-
tion III, where we report on requirements for a collective
bookmarking tool, elicited from a survey and the interviews
with practitioners. In Section IV we describe our approach

2011 19th IEEE International Conference on Program Comprehension

1063-6897/11 $26.00 © 2011 IEEE

DOI 10.1109/ICPC.2011.19

101

and the tool implementation. Section V presents the design
of our experiment, while Section VI reports on its results.
Section VII discusses the threats to validity. Finally, we
summarize our conclusions in Section VIII.

II. RELATED WORK

Code bookmarking can be classified as one form of support
for user-defined annotations. Other forms are task markers,
tag annotations, and cross-reference hyperlinks [14]. These
annotations are relatively common practice among users of
modern IDEs, however their design and purpose vary greatly.

Eclipse’s user-defined annotations are classified into three
categories: (1) tasks – //TODOs, //FIXME, //XXX; (2)
problems – reporting invalid states of the system; and (3)
bookmarks – for marking locations and having quick access to
them. Tasks reside in the source code and have the purpose of
reminding (recalling information regarding a specific piece of
code) developers, while problems and bookmarks are external
links to a line in a source file.

Brühlmann et al. proposed a generic annotation tool,
called Metanool to capture and retain human knowledge
during reverse engineering processes [2]. Metanool supports
the association of any type of annotation (e.g., comment,
document, UML diagram) to a source code entity. However,
it was targeted at facilitating reverse engineering activities
instead of supporting active development.

TagSEA combines the notion of marking locations in
spatial navigation with social tagging to support reminding
and refinding (revisiting a specific part of the code) [14].
The TagSEA annotation has the form of a customized Java
annotation, residing in the source code, and thus being
shareable across the team. These annotations were designed
to be easy for development teams to search, filter, and
manage. They also proved to be useful for creating tours
for technical presentations that involve interacting with the
IDE [4]. TagSEA was evaluated in several (longitudinal) case
studies: the findings focus on the sort of tags used and the
extent to which tags could be reused.

JTourBus is a similar approach that creates tour guides to
help programmers to perform a task or to assist them to get
familiar with a sequence of code dependencies [11].

Contrary to TagSEA, our collective bookmarks are de-
signed to reside outside the source code, bringing two benefits:
flexible privacy setting – the author of the bookmark can
decide whether to share it and with whom; and cleaner code.
Furthermore, our evaluation is different, emphasizing code
locations over tags, and being carried out with a larger group
of participants all conducting the same tasks. Different from
JTourBus, our approach does not provide means to create
guides, but provides a lightweight approach for developers
to micro-document their findings when performing program
comprehension activities.

III. MOTIVATION

Previous studies have reported a low use of code book-
marks that do not reside in the source code. In their report on
usage data collected from developers using Eclipse, Murphy
et al. state that only 5 out of 41 developers used the bookmark
view [10]. In another survey, Storey et al. report that 84% of
the respondents never or rarely use bookmarks [13]. Some
hypotheses are raised to explain the low adoption, such as
poor visibility in the IDE, or poor synchronization with the
code; however no further investigation was performed to
understand the reasons for the low adoption.

We conducted an online survey to investigate why book-
marks are rarely or never used in modern IDEs. We collected
a total of 209 responses from which 71% of the participants
were practitioners and 29% academics. The vast majority
consisted of experienced developers (60% had more than 6
years of experience, 30% had 3-5 years of experience, the
rest had less than 3 years of experience).

From the respondents, 88% report that they never or
rarely use code bookmarks (confirming previous results). We
furthermore asked them why this is the case. Among those
88%, who never or rarely use bookmarks, 50% answered
they did not know that bookmarks existed in their IDE, 25%
stated that they do not find them useful, while 9% think
creating a bookmark is cumbersome (Figure 1).

Figure 1: Reasons for not using bookmarks in the IDEs

We also collected qualitative information about how people
are using bookmarks. A number of respondents reported that
bookmarks are useful for keeping track of points of interest
in the code while understanding it (“I use them while I’m
skimming code and trying to get a clue about how to fix
something. I therefore bookmark interesting pieces of code
to be further inspected”) and to quickly access them later
(“as a way to return back to the same bit of code a few days
later”). Respondents also reported to use them as a guide
while working on a task (“For marking something of interest,
so I don’t lose it. shift-F11 in IDEA lists all bookmarks - I
tend to create a series of bookmarks for a particular task,
so I can find the main bits of the problem.”).

To further investigate the potential of our approach, we
conducted interviews with four practitioners with different
roles: (R1) a software developer with 6 years of experience

102

who was not aware of code bookmarks; (R2) a software
developer with 8 years of experience who was aware of
code bookmarks; (R3) an open-source developer 10 years of
experience; and (R4) a software architect and team leader
with 25 years of experience.

R1 reported that his team has the culture of placing regular
comments and task markers in the code to remind, refind,
and annotate decisions. This is a problem when the code
goes to quality assessment: “In the system we work we see
thousands of TODOs, and we never do anything about it.
(...) Every six months the manager freaks out because of the
quality control, and we have to clean up the entire code.”

R2 actively uses code bookmarks, mainly to understand
a legacy system that his team maintains. He reported that
system size and lack of documentation are the main reasons
for using bookmarks: “The code is huge and I really need
them as breadcrumbs, in particular when I’m digging into
code. (...) I’m changing code that was written by 5-6 people
in 10 years with no architecture, no design, (...) and I must
have a way to track all the jumps that I’m doing.” One of his
main complaints was the lack of share-ability of bookmarks:

“(...) and I actually tell him (teammate) where to add his
bookmarks (...) but since up to now there’s no way of sharing
them, most information remains just for me.” Since R2 is
actively using code bookmarks, we asked him what features
he would like to have, and his answer was: “I want to share
my bookmark’s description, and I’d like to add resources
to it. (...) Keep it simple.” Other suggestions were to offer
grouping options, and sequencing by the user’s choice.

With R3 and R4 we investigated when collective book-
marks would be useful. R3 thought they could be very useful
to assist the developers of his team, who are spread across
different locations. R4 identified the following situations:
when a developer is passing the responsibility of a part of the
code to another person; to maintain traceability between UML
diagrams and the code; in the beginning of development, to
annotate the most important methods of the API.

Summary. Based on the survey and the interviews, we
have identified the following requirements for collective code
bookmarks and for a tool that supports them.

Be share-able. Current bookmarks are either private or can
be shared through the source code, imposing a restriction on
how a developer can share it. The feedback collected suggests
that developers want to be able to share their bookmarks,
but doing it so through the code clutters the source code.

Have a description. Code bookmarks should be used as
a means for micro-documenting a finding. Having a textual
description of the finding is essential for reminding it later.

Support grouping and sequencing. Developers would like
to be able to associate auxiliary information to bookmarks
to help organizing them.

Be platform independent. There are numerous languages
and IDEs, and having a bookmark model for each combina-
tion restricts the social benefit of bookmarks. There should be

bookmark resource

description

information

+

+

+

Figure 2: Meta-model for collective code bookmarks

a standardized model that can be used in any language/IDE.
Be simple to use. The action of bookmarking a location

in the code should be non-intrusive, intuitive and almost
effortless. Otherwise the gain from the information registered
is hindered by the effort to register it.

IV. THE POLLICINO APPROACH

A. Collective Code Bookmarks

Two requirements for collective code bookmarks are to
be shareable and platform independent. Thus, we redefine
code bookmarks by proposing a meta-model, in the form
of a standardized and extensible XML schema. Using an
XML schema to encode the above information allows code
bookmarks to be shared as XML files, making them portable
to any IDE and attachable to any source file.

Figure 2 illustrates our meta-model, composed of three
parts. The description can be a text message, a link to
internal/external resources, or tags. Any type of description
can be added (ranking attributes, pictures, movies, etc.).
The resource contains information about the location of the
bookmark in a file: project – the name of the project; location
– the full path of the file within a project; line number – the
line number where the bookmarks should be placed. The three
attributes are mandatory to properly locate the bookmark
in a file. Finally, information contains an extensible list of
optional attributes (such as author, creation time, group, or a
file revision number).

B. Pollicino

To assess the feasibility and usefulness of collective
code bookmarks, we have implemented POLLICINO2 (see
Figure 3), an Eclipse plug-in that allows developers to place
bookmarks as a way to micro-document their findings, and
share them with others. In the following, we present the main
features of POLLICINO.

Bookmarking the code. To bookmark a code snippet, the
user can mark it and right-click on the editor or on the left
ruler, and choose “Add Stone” in the popup menu. The user
then enters the minimum information (e.g., a description)
after which POLLICINO inserts a blue marker into the left
ruler at the corresponding line (Point 1). Bookmarks can be
added in any type of file (e.g., source code, text file, XML
file, build file, etc.). Some participants of the survey reported

2Pollicino (Little Thumbling in Italian) is inspired by the fairy tale Hop-
o’-My-Thumb, in which a boy uses pebbles to find his way back home.

103

1

2

3

4

5 6

Figure 3: Eclipse with the Pollicino plug-in

that creating bookmarks is cumbersome. To alleviate this, the
user can create bookmarks with a simple keyboard shortcut,
easing the mechanical process of creating bookmarks.

Showing bookmark information. The POLLICINO view can
be displayed with one click (Point 2), showing the bookmarks
that are currently in the user’s workspace and the information
associated with them (Point 3). The view shows the user’s
comment, the resource and the line where the bookmark is
located, the line content, the author and the date.

Grouping and sorting bookmarks. There are different ways
to organize bookmarks on the view. They can be grouped by
“active/archived”, or the user can create customized groups.
The user can also sort bookmarks according to any column of
the view. The information in all the columns can be searched
for specific information using the search bar (Point 4).

Navigating through bookmarks. Double-clicking on a
bookmark entry in the view takes the user to its location
in the editor. The view also provides a Navigation mode
(Point 5), which shows the location of a bookmark with a
single click (or navigating with up and down arrows).

Sharing bookmarks. It is possible to import/export all or a
selection of the bookmarks from/to an XML file that follows
the schema presented in Section IV-A (Point 6).

Customizing bookmarking. When creating a bookmark, by
default the user has to enter a comment and her name. The
user can transform the creation of bookmarks as a one-step
process by customizing the information she needs to enter
on the preferences page (e.g., save her name and add a blank
comment).

POLLICINO is available for download at http://www.st.ewi.
tudelft.nl/∼guzzi/pollicino/.

V. PRE-EXPERIMENTAL STUDY DESIGN

We conducted a user study with the goal of investigating
the potential of our approach. To achieve our goal, we assess
the tool’s effectiveness, adequacy and usability using an
exploratory pretest-posttest pre-experimental design [3]. Pre-
experimental indicates that the experiment does not meet the
scientific standards of experimental design [1], yet it allows
to report on facts of real user-behavior, even those observed
in under-controlled, limited-sample experiences.

The study is composed of several experimental runs.
Each run consists of the initial pretest questionnaire, a
demo/tutorial of POLLICINO followed by three assignment
tasks (to perform within Eclipse with our plug-in installed), a
final posttest questionnaire and a concluding debriefing talk.
The complete handout used in the experiment, including the
tasks, the pretest and posttest questionnaires, can be found
in our on-line appendix [8].

A. Research Questions

The main goal of the experiment is to investigate whether
POLLICINO can help software developers during program
comprehension activities (effectiveness). Our main research
question is:

RQ1 Can collective code bookmarks help developers to
perform program comprehension activities?

104

We identify the following three sub-research question:

RQ1.1 Can POLLICINO be used to (micro-)document a devel-
oper’s own findings?

RQ1.2 Can Micro-documentation via bookmarks be useful to
team members to get starting points (i.e., entry points
for program comprehension)?

RQ1.3 Can POLLICINO be useful during development tasks?

A secondary goal of the experiment is to gather initial
feedback on our tool. In particular we are interested to explore
whether the tool’s outcome matches the user’s expectations
(adequacy) and whether the tool is easy to use (usability).
We thus identify the two additional research questions:
(RQ2) Does POLLICINO match the expectation for a code
bookmarking tool? and (RQ3) Is POLLICINO sufficiently
usable by developers? Finally, since POLLICINO is in an
initial stage of development, we also want to gather feedback
on how to improve it.

B. Pretest-Posttest Design

In a pretest-posttest study, participants are subject to a first
test (questionnaire), before performing the experiment, and
to a second test, after performing the experiment. For most
questions in our questionnaires, we make use of closed-ended
matrix questions: participants are asked to rate a number of
statements on a five-point Likert scale.3

Pretest Design. The pretest questionnaire is split into 5 parts.
The first two parts are dedicated to understand the personal
background (part 1) and the software development experience
(part 2) of our participants.

In part 3 we ask participants to rate a number of statements
regarding their habits when understanding code. A partici-
pant’s habits might influence her expectations with respect to
a tool that eases program comprehension. We thus investigate
common practices, e.g., reading the comments inside the code,
reading the available documentation, and making changes to
the code and run it to see what happens. Similarly, in part
4, we try to assess the participant’s familiarity and attitude
toward code bookmarking. Participants are asked to rate
dedicated questions, according to whether or not they were
aware of the bookmarking feature of Eclipse. Additionally,
an open ended question asks them to provide alternatives that
could replace bookmarks in their function of code location
markers.

In part 5, participants are given an abstract description
of POLLICINO (see [8] for the full text), and asked to rate
a number of statements about their expectations of a tool
with such functionalities (see Table I). These statements
are then asked again in the posttest, after introducing the
independent variable (i.e., the use of the tool) and serve to
assess adequacy.

31 = “strongly disagree” , 2 = “disagree” , 3 = “neither disagree nor
agree”, 4 = “agree”, 5 = “strongly agree”.

Table I: Statements used in the pretest to measure adequacy

a) Such a tool would prevent me from getting lost in the code
b) I don’t see the added value of such tool
c) Bookmarking would help me when I’m trying to understand

a functionality
d) As soon as I understand the code, bookmarks become useless

to me
e) Such a tool would help me manage points of interest in the

code
f) The tool will not be able to help me in real problems
g) My bookmarks will help others understand what I did

Posttest Design. The posttest questionnaire is given to the
participants after they performed the assigned tasks to, e.g.,
verify whether POLLICINO is seen as a good implementation
of a bookmarking tool.

We split the posttest into 5 parts. In part 1, we ask the
participants to assess a few statements about their general
experience in performing the experiment, e.g., whether they
found the three tasks doable and whether they felt time
pressure.

In part 2 of the posttest we ask participants about their
experience with POLLICINO while performing the tasks. In
particular, we collect information on the tasks and purposes
the tool has been used for. We use the results from this part
to address RQ1.

Part 3 of the posttest is dedicated to assess the participants’
perception of POLLICINO. Participants are asked to rate
similar statements as in question 5 of the pretest. The
difference is that, at this time, we ask directly about the tool
and not about code bookmarking in general. By comparing
answers to this question and to its counterpart in the pretest,
we can verify how POLLICINO meets the participants’
expectation and address RQ2.

In part 4 participants are asked whether they used particular
features of the tool (e.g., key binding to add a marker) and,
if yes, to indicate how useful they were on a scale from 1 =
“very useless” to 5 = “very useful”. The questions in part 5
are used to measure the usability of the tool. These measures
are used to address RQ3. In addition, these statements allow
us to verify whether usability issues might have influenced
the overall experience with the tool during the assignment.

After the posttest questionnaire, we held a debriefing talk
to collect additional information, both on the tool and the
experiment. During this individual talk with participants, we
could better understand about their experience with the tool
and ask them about their opinion on possible improvements.

C. Checkstyle

The system we chose as object of our experiment is
Checkstyle.4 We used version 5.3, which consists of 341
classes distributed across 22 packages, for a total of 46

4See http://checkstyle.sourceforge.net/

105

KLOCs.5 Our choice was motivated by the following factors:
Checkstyle’s size allows for performing an experimental
session, yet being representative of real life programs. It is
written in Java, with which many potential participants are
sufficiently familiar. It has been used in previous experiments
[15], [17], [6], from which we could reuse one of the tasks.

D. Tasks

We designed the tasks for our experiment according to
the sub-research question related to RQ1, from which we
derive the following three different scenarios: (1) investigate
and understand a part of a system, (2) (micro-)document a
system’s functionality, and (3) add functionality to the system.
The scenarios require a program comprehension process and
are inspired by Pacione’s taxonomy [12].

Task T1 is used to address RQ1.2. It requires the partici-
pant to gain general knowledge about the execution stages
of Checkstyle, and is reused from Cornelissen’s controlled
experiment [6]. To simulate a collaborative environment, a
number of code bookmarks were already placed in the project.
T2 is used to address RQ1.1. It encourages the participant
to understand and simultaneously document (by adding
bookmarks) the class hierarchy related to the functionality
that checks the adherence to each code convention. The last
task T3 is focused on implementing a new check, to which
the knowledge obtained and the bookmarks added in the
previous two tasks is potentially useful. We use this task to
address RQ1.3.

The three tasks were tailored to be feasible in the allotted
time (20 minutes for each task) considering the minimal
experience level required from the participants. For more
information on each task we refer the reader to [8].

E. Pilot Studies

We conducted four pilot studies to test the experiment’s
feasibility and duration. With the first two runs we found
out that two of the tasks needed to be more focused and
have more guidance to be doable in the allotted time. We
furthermore identified some defects in POLLICINO, which
were fixed before the actual experiment. After the third test
run, we adjusted a few statements from the questionnaires.
The fourth pilot then ran without any particular problem.

VI. RESULTS

We report on the results obtained from our experiment.
We first describe our participants and their attitude toward
program comprehension and code bookmarks (as measured
from the pretest). Then, we report on their performance during
the assignment (as measured from the posttest and from
analyzing the code bookmarks placed during the experiment).
Finally, we present the results from the posttest, along with
the feedback from the participants, to answer our research
questions.

5Measured using http://eclipse-metrics.sourceforge.net/

A. Participant Characteristics

12 volunteers participated in our experiment. 2 participants
were from the University of Antwerp, 2 from the University
of Lugano and 7 from the Delft University of Technology.
4 participants were PhD students, 7 participants were MSc
students (3 of which are working as part-time developer).
All participants were male, aged between 24 and 30. One
participant reported that the tasks were not feasible. Since
task feasibility was a requirement for our experiment, we
excluded his results from our analysis, giving a total of 11
subjects in our study.

Figure 4 reports the participants’ experience regarding
software development on a 5-point scale.6 The box plot
depicts the following data: minimum value, lower quartile,
median, upper quartile, and the maximum value. As can be
observed, participants reported to have good knowledge of
Java, IDEs, and Eclipse, while the experience in working
on industry-sized systems is lower. All participants reported
to have no or low experience with Checkstyle, indicating
that their answers were were not influenced by previous
knowledge about Checkstyle.

0

1

2

3

4

Java Team Industrial
size

IDEs Eclipse Checkstyle

Level

Figure 4: Participants’ experience

B. Comprehension Attitude

In the pretest, we ask the participants to rate a number
of statements aimed at measuring their attitude toward both
program comprehension and bookmarking. We next go into
detail of these two aspects.
Attitude toward program comprehension. The most pop-
ular practices (indicated by 10 out of 11 participants) when
working on a task on unfamiliar code of a system are to
investigating the code before starting with the task, and
to reading the code comments (if available). Most of the
participants recognized that they often navigate through
several classes and find themselves lost amongst many
open tabs. 7 participants stated that they read the available
documentation, and make changes and/or add print statements
to the code and then run it to see what happens. Some less
popular practices indicated are: to start looking at available

60 = “does not know the subject”, 1 = “familiar with the subject, but
still have some difficulties with it”, 2 = “comfortable in the subject and
currently using it daily”, 3 = “highly proficient in this subject”, 4 = “serves
as reference for colleagues, and feels confident in helping them”.

106

Table II: Examples of bookmarks placed during the experiment

Comment File Location
Use this method to specify which tokens to respond to Check.java getDefaultTokens()
Implement which token the check is interested in Check.java getDefaultTokens()
If you’re interested, this is where your Check is actually called TreeWalker.java notifyVisit(DetailAST aAST)
Data structure, it’s parsing a tree DetailAST.java class declaration
This class must be extended for Format checking purposes AbstractFormatCheck.java class declaration
Use this class for logging check output AbstractViolationReporter.java class declaration
Checks respond on tokens. These are the types you can respond to. Compare this to
the Listener system: you subscribe to all tokens you want to respond on

TokenTypes.java class declaration

test suites, to use specific tool or markers (e.g., TODO), or
to look at UML diagrams.

Overall, we can say that our participants’ effort in program
comprehension relies mostly on investigating the code,
reading comments and documentation (when applicable), and
making changes (or insert print statements) before running
the code.

Attitude toward (code) bookmarking. One participant who
knew about code bookmarking within Eclipse indicated that
the feature is relatively easy to use. According to him,
creating a bookmark is not particularly cumbersome and
code bookmarks are useful. Another participant did not think
that bookmarks are easy to use. He indicated that creating
code bookmarks is cumbersome and he is not sure whether
they are useful.

7 out of the 9 participants who did not know about this
feature, indicated that they agree with the statement “Code
bookmarks seem to be useful”. The remaining 2 indicated
they “neither disagree nor agree” with the statement.

We asked participants to shortly report on which tools
or methods they use to function as “code location markers”
during their program comprehension routines. One participant
reported that he makes use of visually outstanding comments
(such as “//*************//”), so that the location is
easily spotted when looking at the code. Alternatively,
he introduces lots of consecutive new lines, to create a
easily noticeable blank space. Another participant explicitly
introduces compilation errors and also uses a custom tool.
One participant wrote that he uses Mylyn to link code to tasks.

Overall, most participants were not aware of code book-
marking features, yet acknowledged the usefulness of code
location marking facilities.

C. Task Performance

During the assignment, the participants were invited (but
not required) to use the bookmarks already placed in the
project, and to add their own bookmarks. Table II illustrates
some typical bookmarks they added while performing the
tasks. Observe that several bookmarks were placed at the
declaration of a class with a short description of its purpose.
Other locations where bookmarks were commonly placed
are at the method declaration, with a short description of its

Table III: Number of participants who placed a certain number
of bookmarks for T2

Participants 2 2 1 1 3 2
Bookmarks 8 6 5 4 3 0

functionality; or at some statement inside a method, where
there is a method call of interest.

For T1, we provided a set of bookmarks that was split into
5 groups, which corresponded to the main stages of a check
in Checkstyle. Most participants seem to have benefitted
from the grouping, since 10 out of 11 correctly identified
the stages, which varied from 4 to 6 in their answers.

T2 required understanding the Check hierarchy, placing
bookmarks during this process. The number of bookmarks
placed by the participants is shown in Table III. A common
practice was to look for the abstract implementation of
a Check that could be extended, or an example of its
implementation, and mark its location.

For T3, we asked the participants to implement a check to
count the number of methods in a class. 2 participants had
correct implementation, 3 copied the content of a similar class
(making the implementation also correct), 2 had incomplete
implementation on the right track, and 4 had incorrect
implementation. We did not identify a correlation between
the number and quality of bookmarks added in T2 and the
quality of the code implemented for T3.

Overall, participants reported that the tasks were feasible,
interesting, and realistic, that the warm up task (a short
“hands-on”, which preceded the tasks) was useful, and that
the experiment was fun to do. 4 participants indicated that
they would have needed more guidance to complete the tasks.
8 participants felt time pressure.

D. Experience with collective code bookmarks

In this section, we discuss and answer RQ1, which is
associated with the effectiveness of POLLICINO in helping
developers to perform program comprehension activities. We
first address the three sub-research questions related to it.
RQ1.1: Can POLLICINO be used to (micro-)document a
developer’s own findings? Participants reported that POLLI-

107

CINO was useful during T2 (6 participants reported to have
used the bookmarks already contained in the code), where
the scenario was to (micro-)document some of the system’s
functionality.

In addition, participant feedback on POLLICINO’s book-
marks was generally positive. They found the navigation of
bookmarks useful, as they could “tag important stuff and
then (..) quickly navigate to it later” (P6). P8 hypothesizes
bookmarks could be used as a mind map for a developer to
document his findings. P2 sees “a very natural relationship
between POLLICINO, code, and diagrams”, and suggested
the possibility to link POLLICINO’s bookmarks with design
documents (e.g., UML diagrams). P7, who has work expe-
rience, said his practice is to annotate code via comments
and then search for them. After trying our tool, he thinks “a
bookmark would be very handy for that”.

We conclude that POLLICINO can be used to (micro)-
document a developer’s own findings.

RQ1.2: Can micro-documentation via bookmarks be useful
to team members to get starting points? Participants reported
that POLLICINO was useful during the first task T1, where
the scenario was to investigate and understand a part of a
system. 10 had correct answers to the task.

Additionally, during the debriefing talks, participants
recognized the value of using POLLICINO within a team, e.g.,
by having step-by-step instruction to help newcomers steer
their way in a project (P9). They also stressed the importance
of sharing and synchronization of bookmarks, recognized the
need of supporting synchronization of bookmarks, proposing
to have bookmarks automatically integrated with a version
control system. Not all participants are convinced that existing
bookmarks helped them to understand the system. They
emphasized that a bookmarks’ description should be as
meaningful to other people as to its author.

We conclude that POLLICINO has a potential to be useful
for team members to get starting points.

RQ1.3: Can POLLICINO be useful during development tasks?
Only 2 participants reported POLLICINO as useful during
T3, which asked to implement a functionality in the system.
Also, there seem to be no correlation between the number of
bookmarks placed and the quality of the code implemented
for T3.

A few participants mentioned during the debriefing talks
that POLLICINO bookmarks could be used during develop-
ment tasks, e.g., as a replacement for “temporary” TODOs
(P3). Participants were not convinced about the potential of
POLLICINO during development.

We conclude that regarding active development, POLLI-
CINO is not as useful as for documenting or understanding
code.

Summary. Overall, participants found our tool useful when
their tasks were precisely to understand or document the
code (9 and 8 matches, respectively), while they did not

1

3

5

a b c d e f g

Level

(a) Expectations, as measured in the pretest

1

3

5

a' b' c' d' e' f' g'

Level

(b) Perception, as measured in the posttest

Figure 5: Expectations and perception of a tool like Pollicino

find it useful during implementation (only 2 found it useful).
This observation reflects on the use of bookmarks, which
were mostly added during the micro-documenting task, as
indicated by 10 participants. Therefore, we can answer RQ1
positively by stating that collective code bookmarks can help
a developer during the documentation of her own findings,
and this information can be useful to her team members.

E. Expectations vs Perception of Pollicino

To answer RQ2, associated with the adequacy of our tool,
we analyze of expectations vs. perception of POLLICINO. In
the pretest, the participants rated seven statements about
a hypothetical tool with POLLICINO’s functionality (see
Table I). In the posttest they rated the same statements, but
this time about POLLICINO itself. By comparing the answers
to this question and to its counterpart in the pretest, we can
verify how the perception of our tool meets the participants’
expectation.

Our sample is composed of (the ratings of) 11 participants.
The box plots in Figure 5 depict the following data from
our sample: minimum value, lower quartile, median, upper
quartile, and the maximum value. To ease the visualization
and analysis of the data, we mirrored the ratings of statements
b, d and f (cf. Table I) that were formulated with a negation
(e.g., “4 = agree” becomes “2 = disagree”). We did the same
for the ratings of the corresponding statements in the posttest.

Figure 5a summarizes the ratings obtained for the ex-
pectations of a bookmarking tool. Thus, in advance many
participants are not sure about whether the tool can prevent
them from getting lost in the code (a). Most participants are
positive about the added value of the tool (b), its value to
others (d), and about helping someone to manage points of
interest in the code (e). Participants were less, but still positive
about the tool helping them while trying to understand a
functionality (c), especially in real problems (f), and also

108

helping others to understand one’s findings (g). In general, the
expectations of a bookmarking tool with collective benefits
were very positive.

Figure 5b summarizes the rating levels we obtained for
the perception of POLLICINO. We can see that after using
POLLICINO, the perception is positive for most participants
and in most aspects. This is reflected by the fact that most
participants see the added value of POLLICINO (b′), think
that the tool did not become useless when they understood
the code (d′), and believe that the tool helped them to manage
points of interests in the code (e′). Participants are still not
sure whether POLLICINO was able to help them with real
problems (f ′), and prevented them from getting lost in the
code (a′). They have different opinions on whether their
bookmarks will help others understand what they did (g′).

Overall, the perception of the participants remained posi-
tive, although the comparison of the box plots in Figure 5 sug-
gests that POLLICINO does not match the high expectations of
the participants. To test whether this difference is significant,
we performed a Wilcoxon signed-rank test with the ratings
from the paired statements. Wilcoxon is a non-parametric
test to assess the null hypothesis that the medians of two
samples do not differ. The results show that for each pair
the Wilcoxon test is non-significant (p-value>0.05), hence
from this data we can not conclude a difference between the
expectations and perception of POLLICINO.

Therefore, we answer RQ2 by arguing that, even though
the results of the comparison suggest that POLLICINO did not
match the expectations of a collective code bookmarking tool,
the Wilcoxon test did not show a statistical significance on
the difference between expectations and perception. During
the debriefing talks, some of the participants argued that they
were expecting the tool to teach them how Checkstyle works
(e.g.,“they are a starting point, but they don’t teach you the
system” (P8)). Instead, the goal of POLLICINO is to guide its
users to points of interest while understanding a concept of
the system. Hence, there was some mismatch between what
the tool could offer and what the participants were expecting
from it.

F. Tool Feedback

Pollicino Usability. Of the 11 participants, 9 found POLLI-
CINO easy to use, while the other 2 rated the statement “I
found Pollicino’s Eclipse extension easy to use” with “neither
disagree nor agree”. Participants are generally positive that
they would be able to get used to POLLICINO during their
everyday work activities. Participants reported they did not
get error messages while using the tool and that defects they
possibly experienced did not severely hinder its usefulness.
Furthermore, no participant reported that the information
from the tool distracted him from the tasks.

The feedback on the tool’s usability was positive: partici-
pants liked the simple, but complete and easy to use, interface
of POLLICINO. P2 said that “everything I needed was there”,

while P5 observe that “It’s a basic Eclipse feature, so it’s
easy to use and understandable”.

Based on this, we can answer RQ3, regarding POLLI-
CINO’s usability, positively.
Pollicino features. Since our tool is in an initial stage of
development, we also want to gather feedback on how to
improve it. We focus here on the tool’s features. Their
perceived usefulness was measured in part 4 of the posttest,
while additional feedback and suggestions were collected
during the debriefing talks.

All eleven participants indicated that the possibility of
grouping bookmarks and the POLLICINO view are “useful”
and “very useful”. The same rating level was given to both
means to add a bookmark in the IDE (i.e., the popup menu
and the keybinding), for which most participants only used
the popup menu, two participants used only the keybinding
and one reported to have used both (finding both of them
useful). Moreover, participants find the navigation mode in
the view, used by 9 of them, and the sharing (import/export)
of bookmarks also useful. 8 participants used the option
to archive and activate bookmarks, and they have different
opinions about whether it is useful or not, with a tendency
to find the feature not so useful.

In the debriefing talks, participants suggested ways to
improve POLLICINO. In summary: have a custom order
for the bookmarks within groups; be able to hide archived
bookmarks; have the possibility to add a new empty group;
have the possibility to create a hierarchy for bookmarks (per
user, per package, per class, etc.); be able to add multiple
bookmarks to one location in the code; have different type
of bookmarks (e.g., text comment, example, todo) to further
categorize bookmarks, and maybe have different colors for
each type.

VII. THREATS TO VALIDITY

A. Internal Validity
Participants. To ensure the minimal knowledge required

to perform the assignment, we asked them to rate their
expertise on a number of topics related to the experiment.
In addition, feasibility of the tasks was a requirement, and
the one participant who felt the assignment was unfeasible
has been excluded from the analysis.

Questionnaires and Tasks. The 5-point scale questions
may have influenced the participants to follow a pattern on
assigning points to the statements. We interleaved affirmative
and negatory statements to mitigate this effect. When we
provided a description of a collective code bookmarking
tool, we may have influenced the participants to think our
tool would teach them about the object system, which may
have had a negative influence on the comparison between
expectation and perception of our tool. Each task was
associated to one program comprehension activity for which
POLLICINO may be helpful. For one of the tasks, the authors
added bookmarks that might have made it too easy to answer.

109

Experimental runs. There were several runs, and differ-
ences between them, such as different training of POLLICINO,
may have influenced the results. To alleviate this effect, we
ran 4 pilots to fine tune the experiment, and followed a
defined script when giving the tutorial of the tool.

B. External Validity

Participants. The fact that the participants were from
academia may have limited our ability to generalize the
results to the industrial environment. To alleviate this effect,
we made sure participants had a minimum knowledge of
the related topics, and felt the tasks were feasible. Also, a
number of participants have experience as practitioner.

Tasks. Our choice of tasks may not reflect real questions
related to program comprehension. To mitigate this threat,
our tasks were inspired by Pacione’s taxonomy [12], and
Task T1 was reused from a previous controlled experiment
on program comprehension [6].

Object System. Even though Checkstyle is a largely used
open-source system, it may not be representative of complex
commercial systems. Thus, the use of a different object
system may have yielded different or more reliable results.

VIII. CONCLUSION

We have reported on the results of a survey with 209
respondents and on interviews with 4 practitioners. After
eliciting the requirements for a collective code bookmark
approach, we presented POLLICINO. We reported on a pretest-
posttest pre-experimental user study to assess the effective-
ness, adequacy, and usability of POLLICINO. 11 subjects
participated in our user study, which consisted of: performing
three program comprehension tasks (using the Eclipse IDE
with POLLICINO installed), answering two questionnaires
(one before and one after the tasks), and having an individual
semi-structured debriefing interview.

The results illustrate that POLLICINO can be effectively
used to (micro-)document a developer’s findings, and that
those can be used by others in her team. However, the tool
was not effectively used for program comprehension during
active development. This could be partially due to the need
of adjusting one’s work habits, when a new tool is introduced.
We also assessed and concluded that POLLICINO is usable.
Directions for future work are to improve our tool (e.g.,
to better support synchronization of bookmarks), and to
perform a longitudinal study to properly assess the value of
POLLICINO and of collective code bookmarks.

ACKNOWLEDGMENTS

We thank the participants in our survey, interviews and
user study. We also thank Andy Zaidman for his valuable
input. Hattori is supported by the Swiss Science Foundation
through the project “GSync” (SNF Project No. 129496).

REFERENCES

[1] E. Babbie. The practice of social research. Wadsworth
Belmont, 11th edition, 2007.

[2] A. Brühlmann, T. Gı̂rba, O. Greevy, and O. Nierstrasz.
Enriching reverse engineering with annotations. In Proceedings
of MoDELS 2008 (the 11th Intl. Conf. on Model Driven En-
gineering Languages and Systems), pages 660–674. Springer-
Verlag, 2008.

[3] D. Campbell, J. Stanley, and N. Gage. Experimental and quasi-
experimental designs for research. Rand McNally, 1963.

[4] L.-T. Cheng, M. Desmond, and M.-A. Storey. Presentations
by programmers for programmers. In Proceedings of the ICSE
2007 (29th Intl. Conf. on Softw. Eng.), pages 788–792. IEEE
Computer Society, 2007.

[5] T. A. Corbi. Program understanding: Challenge for the 1990s.
IBM Systems Journal, 28(2):294–306, 1989.

[6] B. Cornelissen, A. Zaidman, and A. van Deursen. A con-
trolled experiment for program comprehension through trace
visualization. IEEE Transactions on Software Engineering,
2011.

[7] B. Dagenais and H. Ossher. Mismar: A new approach to
developer documentation. In Proceedings of ICSE 2007 (29th
Intl. Conf. on Softw. Eng. - Companion, pages 47–48. IEEE
Press, 2007.

[8] A. Guzzi, L. Hattori, M. Lanza, M. Pinzger, and A. van
Deursen. Collective code bookmarks for program comprehen-
sion – online appendix. http://www.st.ewi.tudelft.nl/∼guzzi/
pollicino/user-study-1/.

[9] T. D. LaToza, G. Venolia, and R. DeLine. Maintaining mental
models: a study of developer work habits. In Proceedings
of ICSE 2006 (28th ACM Intl. Conf. on Softw. Eng.), pages
492–501. ACM, 2006.

[10] G. C. Murphy, M. Kersten, and L. Findlater. How are java
software developers using the eclipse ide? IEEE Softw., 23:76–
83, 2006.

[11] C. Oezbek and L. Prechelt. Jtourbus: Simplifying program
understanding by documentation that provides tours through
the source code. In ICSM 2007 (Intl. Conf. on Softw.
Maintenance), pages 64 –73. IEEE Press, 2007.

[12] M. J. Pacione, M. Roper, and M. Wood. A novel software
visualisation model to support software comprehension. In
Proceedings of WCRE 2004 (11th Working Conf. on Reverse
Engineering), pages 70–79. IEEE CS Press, 2004.

[13] M.-A. Storey, J. Ryall, R. I. Bull, D. Myers, and J. Singer.
Todo or to bug: exploring how task annotations play a role in
the work practices of software developers. In Proceedings of
ICSE 2008 (30th Intl. Conf. on Softw. Eng.), pages 251–260.
ACM Press, 2008.

[14] M.-A. Storey, J. Ryall, J. Singer, D. Myers, L.-T. Cheng, and
M. Muller. How software developers use tagging to support
reminding and refinding. IEEE Trans. Softw. Eng., 35:470–483,
2009.

[15] B. van Rompaey and S. Demeyer. Estimation of test code
changes using historical release data. In Proceedings of WCRE
2008 (15th Working Conf. on Reverse Engineering), pages
269–278. IEEE Computer Society, 2008.

[16] A. von Mayrhauser and A. M. Vans. Program comprehension
during software maintenance and evolution. Computer, 28:44–
55, 1995.

[17] A. Zaidman, B. van Rompaey, S. Demeyer, and A. van
Deursen. Mining software repositories to study co-evolution
of production & test code. In Intnl. Conf. on Softw. Testing,
Verification, and Validation), pages 220–229. IEEE, 2008.

110

