
Code Bubbles: Rethinking the User Interface Paradigm of
Integrated Development Environments

ABSTRACT
Today’s integrated development environments (IDEs) are ham-
pered by their dependence on files and file-based editing. We
propose a novel user interface that is based on collections of
lightweight editable fragments, called bubbles, which when
grouped together form concurrently visible working sets. In this
paper we describe the design of a prototype IDE user interface for
Java based on working sets. A quantitative evaluation shows that
developers could expect to view a sizeable number of functions
concurrently with relatively few UI operations. A qualitative user
evaluation with 23 professional developers indicates a high level
of excitement, interest, and potential benefits and uses.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments –
integrated environments.

General Terms
Human Factors

Keywords
Integrated development environments, concurrent views, working
set, source code, bubbles, navigation, debugging, human factors.

1. INTRODUCTION
Programmers spend between 60-90% of their time reading and
navigating code and other data sources [1]. Programmers form
working sets of one or more fragments corresponding to places of
interest [2]; with larger code bases, these fragments are scattered
across multiple methods in multiple classes. Viewing these frag-
ments concurrently is likely to be beneficial, as it has been shown
that concurrent views should be used for tasks in which visual
comparisons must be made between parts that have greater com-
plexity than can be held in limited working memory [3].

Because contemporary integrated development environments
(IDEs) are file-based it is difficult to create and maintain a view in
which multiple fragments are visible simultaneously. This re-
quires the programmer to manually and repeatedly perform nu-
merous interactions to place, resize, scroll, and reflow a different
file window for each fragment. Instead, IDEs are optimized for
switching among different views using tabs, forward/back but-

tons, etc. Perhaps as a result, programmers may spend on average
35% of their time in IDEs actively navigating among working set
fragments [2], since they can only easily see one or two fragments
at a time.

In this paper, we argue in favor of a new approach, where the IDE
shows multiple editable fragments simultaneously, letting the user
see and work with complete working sets. The result reduces na-
vigations and supports new higher-level interactions over and
within the working set.

Our approach is founded on the metaphor of a bubble – a fully
editable and interactive view of a fragment such as a function,
method documentation, or debugging display. Bubbles, in contrast
to windows, have minimal border decoration, avoid clipping their
contents by using automatic code reflow and elision, and do not
overlap but instead push each other out of the way. Bubbles exist
in a large virtual space where a cluster of bubbles comprises a
concurrently visible working set.

In [4] we developed the bubble metaphor (recapped in Section 5)
and associated interaction primitives as part of an iterative design
and testing process. A further quantitative evaluation showed that
users were able to perform complex code understanding tasks
significantly more efficiently when using bubbles than when using
Eclipse due to reduced navigation.

In this paper, we extend the bubble metaphor to build a prototype
working set-based user interface for an IDE and constituent tools.
The goal of this paper is to explore and understand the merits,
usability considerations, and potential uses of this novel user in-
terface paradigm at the IDE system level. Since the problem space
addressed by contemporary IDEs is large, we chose a handful of
core areas to be: high-impact and broadly applicable to the majori-
ty of developers; to represent a sizeable part of the most common-
ly used functionality; and based on our formative evaluations in
developing the metaphor [4] as an initial starting point, including:

 Reading, editing and navigating source code
 Tagging and discovering related functions
 Interruption recovery and multitasking
 Breakpoint debugging (single-threaded)
 Sharing and explaining information

Although this list is by no means exhaustive, we feel this focus is
sufficiently broad to shed light on the merit, usability issues, and
potential uses of a working set-based IDE user interface.

The contributions of this paper are threefold:

 The design of a novel IDE user interface, and associated
development tools, based on working sets of bubbles that has
the potential to improve a broad range of development tasks

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE '10, May 2-8, 2010, Cape Town, South Africa
Copyright © 2010 ACM 978-1-60558-719-6/10/05 ... $10.00

Andrew Bragdon1, Steven P. Reiss1, Robert Zeleznik1, Suman Karumuri1, William Cheung1,
Joshua Kaplan1, Christopher Coleman1, Ferdi Adeputra1, Joseph J. LaViola Jr.2

1Brown University

Department of Computer Science

{acb, spr, bcz, suman, jak2, wcheung, cjc3,
fadeputr}@cs.brown.edu

2University of Central Florida
School of EECS

jjl@eecs.ucf.edu

455

1 http://www.cs.brown.edu/people/acb/videos/codebubbles.mov

 A quantitative analysis of the applicability and scalability of
Code Bubbles for sizeable open-source projects

 A pilot evaluation with 23 professional developers indicating
a very high level of excitement and interest, pointing to po-
tential improvements, and motivating future work

2. SCENARIO
Here we describe a usage scenario of the system as a whole. A
narrated video scenario is available online1. Screenshots of the
Code Bubbles IDE interface are shown in Figures 1 and 2; note
that the screenshots are intended to disclose a wide array of fea-
tures and so do not directly match the scenario narrative.

Jane is planning to change the image uploading feature of a large
content management system written in Java to supplement the
existing manual image resizing feature with support for automatic
resizing. The image uploading feature is complex, spanning do-
zens of functions across twelve classes. Jane, who is not that fa-
miliar with the large code base, wants to avoid being confused by
reading code unrelated to the change.

Jane knows that the image upload begins at a specific event hand-
ler, so she clicks to bring up the popup search box (Figure 1-N)
and types several substrings which filter the list of classes and
methods (1-O). She only has to type a few characters to isolate
and then open the method she wants as a code bubble (1-K). She
right-clicks on method calls within the bubble to open the called
functions in separate bubbles (1-L) that group together, but do not
overlap; each calling relationship is automatically represented
with a connecting arrow (1-M). Within seconds, Jane has opened
a working set of 6 method bubbles related to image resizing.

Interested in a particular variable, she executes Find All Refer-
ences on a variable within a bubble to create a bubble stack (1-F)

next to the bubble – any overlapped bubbles are automatically
repositioned to avoid overlap. The bubble stack shows the lines of
code containing the references. Jane can hover over these lines to
preview their containing methods or click on them to expand in-
line (1-G). When she finds the one she wants, she dismisses the
rest of the stack while leaving the bubble of interest.

Jane instinctively moves related bubbles near each other to gain
an overview of the code structure. The automatic layout manager
ensures that any bubbles obscured are automatically moved to
eliminate overlap. Moving the bubbles together implicitly creates
groups, indicated by an automatically assigned colored halo (1-E)
that surrounds the contained bubbles. Jane can enter a name for
any group by typing into its empty title box; in this case, she de-
cides to name her group of bubbles “Image sizing and measur-
ing,” both to help her remember the purpose of these bubbles
now, and to be able find it in the future, if needed.

Just then, her coworker Jim stops by, interrupting her with a ques-
tion about a feature she had written months ago within the same
content management project. She doesn't want to disrupt the
layout of her current working set so she looks for an open area in
the workspace bar at the top of the display (1-A), which shows a
bird’s eye view of the entire workspace, and clicks to jump to an
unused area. She combines popup searching for methods by name
with clicking on method calls to quickly create a panorama of the
code related to Jim’s question. She zooms in, making it easier for
Jim to read the code over her shoulder, and points out the code
structure. Jim is confused by one point, so she places a note bub-
ble (1-D) next to the methods and types some items for him to
look up later. When they are done, Jane uses the share feature to
e-mail Jim the working set of bubbles as an XML attachment that
he can later open in his own Code Bubbles instance.

Figure 1. The Code Bubbles IDE. See section 2 below, Scenario, and section 6 below, IDE User Interface, below. Resolution: 1920x1200 (space reserved for taskbar).

456

Jane then clicks on her previous working set in the workspace bar
(1-B) to return to her previous task. All of the methods and me-
thod connections are where she left them; since she had instinc-
tively arranged them to reflect her personal view of her code and
task structure, it is relatively easy for her to regain her train of
thought and continue working. Jane edits her code directly in the
bubbles, with new bubbles budding off for new functions.

To test her changes, she clicks to place breakpoints and presses
F11 to start a debug session. When the breakpoint is hit, the work-
space pans to an empty region and displays the bubble containing
the corresponding code (2-N). Jane steps into a function which
automatically opens a second bubble (2-O) to the right of the me-
thod that called it with an arrow between the two. As she steps
into another method, a third bubble opens (2-P). Jane inspects the
contents of a particular object variable by choosing Inspect Data
from its context menu, opening a data structure bubble (2-Q) dis-
playing the values of all the fields in the object. Jane wants to
focus on only two fields from this bubble which she “tears out”
into independent bubbles to view them side-by-side. She realizes
that there is a corner case that she hadn’t anticipated caused by an
unexpected sequence among a set of methods. Jane runs again,
this time inputting a different database, and repeats her debugging
steps. Since the new debug session (2-A) is visible side-by-side
with the previous debug session (2-M), she can compare the val-
ues of the data structure from the previous run (2-R) with the cur-
rent run (2-F). After Jane finds and fixes the problem, she creates
a note bubble next to the methods involved in the unusual calling
sequence to remind her of this corner case the next time she edits
any one of these methods.

3. BACKGROUND AND RELATED WORK
The overall motivation for a new user interface for traditional file-
based programming is based on many studies that have shown the
difficulties with existing environments [5] [2] [6] [7]. These and
other studies have shown that programmers spend a significant
amount of time navigating code, that interruptions reduce effi-
ciency, and that programmers interact in terms of working sets
that contain the context for their activities. Code Bubbles is an
attempt to provide a user interface that facilitates these activities.

User interfaces for classical programming languages have a long
history. The work closest to the bubbles approach let the pro-
grammer work in terms of program fragments. These efforts let
the programmer edit in terms of individual functions, or similar
units. This was the approach taken in Desert [8] [9] and it can also
be seen in IBM’s Visual Age environments [10] and in the Sheets
environment from CMU [11]. All these were loosely based on
non-file based programming environments such as Xerox’s Small-
talk and its successors, including Squeak [12], various versions of
Lisp, SELF [13], and visual languages such as NI’s LabView. In
the Visual Age environment, the system maintained a repository
of abstract syntax trees derived from the original program files,
and the user edited views built from the tree. Desert took this a
step further and allowed the definition of a wide variety of differ-
ent fragments whose primary representation was their original
file, but which could be edited separately. Moreover, Desert sup-
ported the notion of virtual files, displays that contain fragments
pulled from a variety of files that can be edited and saved, with
the edits going back to the original files. These environments did
not make use of syntax-aware reflow, automatic layout con-
straints, fragment groups and annotations, or a continuous virtual
workspace which can be subdivided into sections.

Bubbles make use of code elision and code reflow. Most modern
environments offer a limited form of code elision [14]. For exam-
ple, Eclipse will elide multiple import lines into a single line and
will let functions and classes be elided manually to their declara-
tion; Eclipse also provides a Formatting command which reflows
code to fit. Other environments attempt to do so automatically,
providing a fisheye view of the source code [15] focused on the
current line of code. Another approach is that of JASPER which
attempts to display small read-only views that represent the user’s
current task as a means for navigation [16].

The problems inherent to navigation in IDEs have been recog-
nized for some time. A number of tools have been developed to
add navigation aids to existing file-based environments, for ex-
ample Hipikat [17], NavTracks [18], Mylar [19] [20], Team-
Tracks [21], TaskTracer [22], Idewaypoint [23], NaCIN [24],
FEAT [25], ConcernMapper [26], and Creole [27]. Navigation in
the bubbles paradigm is done by the programmer creating bubble
groups and bubble layouts corresponding to working sets, inde-
pendent of file. We have incorporated some of the techniques
from the various navigation tools to assist the programmer in set-
ting up working sets, for example, manually creating bubble
groups of related items based on program structure. These naviga-
tion tools focus on identifying working sets, whereas we focus on
displaying working sets concurrently. Many of the advanced tech-
niques pioneered by these tools, e.g. determining working sets
based on navigation, modification histories, or a degree-of-interest
model, are potentially complementary to our approach and could
be used with the bubbles approach to generate working sets.

The notion of cross-cutting concerns that we deal with using a
fragment-based view of the code, is addressed at the language
level in aspect oriented programming. While our approach does
not currently address multiple concerns within a method, it pro-
vides a much lighter-weight mechanism that can be applied to
existing code bases.

Finally, we note the techniques used in bubbles apply equally well
to debugging while previous work has concentrated on code navi-
gation for editing and understanding. Moreover, debugger exten-
sions, such as WhyLine [28], would have a natural implementa-
tion in terms of bubbles, with the various recommendations made
by the system being represented as separate bubbles.

4. ARCHITECTURE AND BACKEND
To experiment with the bubbles paradigm, we implemented a
prototype for Java suitable for experimentation, user studies, and
evaluation. The front end user interface for the prototype is im-
plemented using Microsoft Windows Presentation Foundation.
The back-end uses Eclipse by creating a plug-in that accepts re-
quests and provides feedback to the front end using a message bus
similar to that of the FIELD environment [29].

The Eclipse plug-in translates many of the Eclipse callbacks into
events that are sent to the front end, for example all changes in
breakpoints, all execution events, and all resource changes. The
plug-in also lets the front end access many Eclipse facilities such
as Java search, autocompletion, and refactoring. The plug-in also
uses a pattern-based algorithm to provide the front end with the
information needed for code elision.

5. THE BUBBLES METAPHOR
The basis for the user interface of our IDE is the bubble metaphor
described fully in [4]; in this section we will briefly recap the
metaphor and then in the next section present the extensions we

457

make in this paper to design a prototype IDE user interface built
on this metaphor. The bubbles metaphor represents working set
code fragments (typically functions) as individual bubbles (Figure
1-L) that can be freely positioned on the 2-D display surface (1-
Q). In addition, the display surface is treated as a portal on a large
scrollable canvas which both lets more bubbles be open in the
workspace than fit onscreen and also encourages programmers to
pan over (thus preserving their working set views) to create room
for new working set fragments when needed. The bubbles meta-
phor fundamentally differs from the multi-window UI used in
some IDEs, such as Visual Studio or Eclipse, because it addresses
four critical problems associated with window displays:

 Code does not naturally fit into arbitrarily sized windows
 Viewing overlapping windows requires manual interaction
 Window decorations are distracting and space consuming
 Eventually, the user will run out of space as he/she works on

a series of tasks

To ensure that code can be easily read and edited regardless of the
dimensions of its bubble, bubbles never clip text horizontally, but
instead automatically reflow long lines. This approach produces
similar results to those generated manually by programmers when
splitting long lines. Additionally, bubbles vertically elide lengthy
functions by default at the block level, and support subsequent
user-based expansion. Reflow and elision are only applied to the
view; they do not edit the underlying text, thus, for example, if the
user resizes a bubble, causing reflow to change in that bubble, the
underlying file is not affected. The user may also open a function
multiple times in separate bubbles; edits in one bubble are auto-
matically propagated to other instances.

Bubbles are also not allowed to overlap each other, making
groups of bubbles easier to read since no Z-order management is
needed. When one bubble is moved on top of another, a bubble
spacer automatically moves the overlapped bubbles out of the way
using a simple, recursive, heuristic algorithm that minimizes the
total movement of bubbles (see [4] for algorithm description).

To facilitate the simultaneous display of large numbers of bub-
bles, bubbles have no space-consuming UI decorations (i.e.,
scroll-bar, title-bar, etc) other than a thin border line and a bread-
crumb bar (see top of 1-L). Instead, programmers interact with
bubbles using right, middle, and left buttons respectively to move,
close or edit text within bubbles. In addition, the scroll wheel is
used to scroll text and dragging the left-mouse button on a bubble
border initiates resizing. The breadcrumb bar provides the bub-
ble’s context by displaying the package and class name. Clicking
on the class or package name provides direct access to peer me-
thods and variables via a drop down list.

In addition to these core display concerns, the bubbles metaphor
introduces several other useful facilities. To create a bubble dis-
play for any method in the full package hierarchy, a popup search
box (1-N) can be displayed by right clicking on the background.
Using Boolean substring matching, programmers need only type
brief fragments of a class or method name to rapidly filter the list
of matched methods and open a bubble from the list. Hovering
over a result shows a preview (1-P).

Background annotations are also used to highlight important inter-
bubble relationships. For example, when Open Definition is cho-
sen for a method call, a rectilinear arrow connection (1-M) is add-
ed to indicate the calling relationship between the resulting me-
thod definition bubble and the bubble containing the call.

A separate type of bubble called a bubble stack (1-F) is used by
commands which logically return sets of bubbles, such as Find All
References. Bubble stacks present results in two columns, the first
listing the function containing the result, and the second showing
the line in question with the result highlighted. Results are
grouped by package, class and method. Clicking an item expands
it in-place as a bubble (1-G). Since each such command results in
a new bubble stack, users can easily compare results side-by-side.

6. IDE USER INTERFACE
Building on the bubbles metaphor as a foundation, we have de-
veloped a functional IDE user interface, described in this section,
that includes many of the features of traditional IDEs, and novel
features that fundamentally leverage the bubbles approach. These
new features are centered on working sets. Some techniques make
it easy to create displays of useful working sets, while others use
displays of working sets to provide direct access to functionality
that would otherwise be unavailable or cumbersome.

6.1 Compatibility Techniques
Since not all techniques benefit directly from the bubbles meta-
phor, we extended our interface to include standard tools. We
display a docked package explorer pane (1-H) on the right-hand
side of the display for exploring and adding new classes, methods
and imports. We also pop-up a pane with compiler errors, docked
to the bottom of the display, when they occur. We provide key-
board shortcuts for common functionality, including the ability to
change keyboard focus between bubbles, bring up the popup
search box, pan, and zoom.

Finally, within bubbles, programmers can edit code in much the
same way they do with a conventional editor. If needed, they can
even bring up a full class in a bubble, perhaps to initially enter the
code for an entire class at once. Developers can also “bud” a new
method from an existing bubble. To do this, users insert a new
line at the bottom of a method in the desired class, and begin typ-
ing the method’s declaration; as the declaration is typed it will
split off into a new bubble that grows as the user types, pushing
bubbles below it out of the way using the bubble spacer. We also
provide several menu-based methods for adding classes and me-
thods. We implemented traditional auto-completion, and further
augmented it with a new working set-oriented technique. Instead
of using auto-completion only to find existing signatures, pro-
grammers can type in a new method signature not in the list and
create an empty bubble for that new method to be filled in later.

6.2 Building Heterogeneous Working Sets
While reading and editing source code is important, we realize
that much of what a programmer does within an IDE goes beyond
code. We thus provide specialized bubbles that let users create
richer task-relevant working sets.

Javadoc bubbles (1-I) let users browse through the documentation
for a class, field or method. Javadoc bubbles provide appropriate
elision controls and popup search box integration makes it easy to
find the appropriate documentation with minimal data entry.

Note bubbles (1-D) let users add formatted text annotations as
sticky notes sharable with others. Flag bubbles (1-J) are a
lightweight means of associating an icon and optional label with
code and are useful for annotating bugs and to-do items, for creat-
ing hyperlinks, and for generally creating visual markers. Web
bubbles provide access to a simple but full-featured web browser
within the bubble framework. Bug bubbles (1-C) provide a bubble
view of bugs from a bug tracking database based on Bugzilla.

458

The developer can display call paths by drawing a connecting line
between two functions open in bubbles with the mouse; the back-
end performs a static call graph analysis to determine if there is a
path in the call graph between the two functions. If more than one
path exists, the shortest path is used. New bubbles and connec-
tions are open for each function in the path, and are inserted be-
tween the two existing bubbles. In addition, a number is displayed
to the right of each bubble, indicating the number of functions
called from that bubble that are also part of a path to the end func-
tion. Clicking on the number will display a list of these functions;
clicking will open that function, which can be further explored.

6.3 Lightweight, Persistent Groups
In addition to individual bubbles, our front end supports bubble
groups (1-E) which provide a simple means for defining and sav-
ing working sets and tagging functions. Groups automatically
form when bubbles are brought close enough together; they are
displayed using a common background color for the group, can be
named using a title box, and are supported by extensions to the
bubble spacer. These extensions both support group membership
and provide an interface for splitting groups.

Groups persist automatically. They can then be reloaded on de-
mand. They can be used as the target of a search, based on a sub-
string match of group name and/or contents. They can also be the
basis for a search, letting the user see bubbles that are related to a
particular bubble by means of saved group membership.

6.4 Interruption Recovery and Multi-tasking
The workspace bar (1-A) at the top of the display is an extension
of the simple panning bar from our previous work [4] that sup-
ports the definition of working sets for a particular task or goal.
These working sets will typically include several bubble groups
and related information.

The workspace bar operates by extending the screen space in the
X and Y directions and provides access to different areas of that
space by simply clicking in the bar. The bar provides a high-level
overview map of the bubbles throughout the virtual display. Sec-
tions of the bar (1-B) can be labeled for task management. The bar
and its sections are continuous rather than discrete so that these
sections can be easily extended to occupy more or less space in-
crementally as a task grows or shrinks in size. The map is detailed
enough to show the icons associated with flag bubbles.

The workspace bar provides a simple means for handling interrup-
tions. If an interruption requires working on the project in a dif-
ferent way, the programmer can easily move to a different area of
the virtual space, do the new work in that space, and then simply
move back to where they were when they were interrupted. Task
naming can help keep track of the interrupted and new tasks.

While the task bar is quite large, it is not infinite. To support pro-
longed development, we allow the user to close and save sections
of the task bar for later use. These sections appear in a list we call
the task shelf where they are displayed with their name and date.
The user can reload closed task sections by clicking.

6.5 Debugging with Bubbles
One of the most important functions of an IDE is to aid the pro-
grammer in debugging. While we wanted to use bubbles to pro-
vide convenient access to traditional debugger support, the
lightweight nature of bubbles and the ability to have significant
numbers of them displayed at once let us provide a much richer
experience by showing program context over time.

Traditional debuggers provide displays of the program state at a
single point in time. However, programmers often need to under-
stand what changes over time, and to compare program state, data
structures, etc. at the current time with their values at a previous
time. Programmers may also want to annotate the program state
with appropriate notes, observations, and ideas and to share this
information with others.

Traditional debugger support is provided by a breakpoint bar to
the left of the code, by toolbar commands or keyboard shortcuts
for starting, stepping, continuing, and terminating an execution,
and by allocating a section of the workspace bar for debugging.

When a program stops at a breakpoint or an exception, the user is
taken to a new area of the debugging workspace (2-J), a code
bubble is opened (2-D) for the code where the program stopped,
and a bubble stack is opened to display the call stack (2-C). This
bubble lets the user open methods from the call stack. If the user
then steps into another method, a new code bubble is created (2-
G) to the right of the current bubble and the bubbles are linked
with a connector. Run time exceptions that stop the program also
create exception bubbles displaying the Javadoc for the thrown
exception. New bubbles opened in the debugger push bubbles that
are siblings in the call hierarchy out of the way using the spacer.

Stepping out does not explicitly remove the prior function bubble.
If the user next steps into another function, a new bubble is
created to the right and below the prior call bubble. If the program
stops in a new context (e.g., breakpoint hit), this context is placed
to the right (2-H) of the prior one and the display is automatically
panned. The result of this is a viewable history of the program-
mer’s debugging actions displayed, where appropriate, as a tree.

Right clicking on a variable brings up a data structure bubble (2-I)
showing the type, name and values of the selected object. These
bubbles can be further expanded to show nested values. Typically,
these bubbles are updated dynamically as the program executes.
However, the user can either freeze a display, or they may “tear
out” a subtree of the data structure and save the display for later
comparison. Data structure bubbles for functions that are not be-
ing executed are saved for future comparison (2-F).

Bubbles are also used to display console output during a debug-
ging session. In addition to a standard console, we support mul-
tiple virtual consoles (2-K, L); users can direct program output to
particular consoles based on a user-configurable line prefix.

Each instance of a program being debugged is stored in a horizon-
tal layout we call a channel (2-A). The system preserves views of
previous debugging sessions (2-M) for comparison. Similar to the
main workspace, each channel can be panned independently and
has a miniature panning bar (2-E), providing a scrollable overview
of the session. The panning bar lets the channel scale to accom-
modate a large or long session. Each session channel is accompa-
nied by a title bar (2-B) that includes the modification date and an
optional title. Sessions can be saved and reloaded using an inter-
face (2-S) equivalent to the task shelf.

6.6 Sharing Information
The configuration of code or debugging bubbles along with ap-
propriate annotations and flags provides a visual display of infor-
mation relevant to the programmer, effectively a visual explana-
tion. This can be printed, exported as PDF or saved for documen-
tation or future use (stored as XML). Moreover, the saved confi-
gurations can be shared with other developers by simply e-mailing
(using the built-in email-as-attachment option) the saved file and

459

having them reload the bubble configuration in their own work-
space.

7. EVALUATION
In [4] we showed that the bubbles metaphor could improve code
understanding performance. In this paper, our focus is on how the
metaphor scales and its utility for real systems. To this end, we
had two principal questions:

 How well does Code Bubbles perform on real applications in
terms of simultaneous readability?

 How do experienced professional developers evaluate the
different features we have developed as they perform repre-
sentative tasks in a controlled environment?

7.1 Quantitative Analysis
Our first study compared the Code Bubbles IDE with an existing
IDE (Eclipse 3.4.2) in terms of scalability. We conducted a quan-
titative performance analysis of the following questions:

 How many functions can one see on screen simultaneously in
Code Bubbles vs. Eclipse?

 How many UI operations must one use to create concurrent-
ly-visible working sets in Code Bubbles versus Eclipse?

7.1.1 Methodology and Metrics
For this evaluation we looked at three large Java-based open
source applications, ArgoUML, a UML designer (155,603 lines of
code [LOC]), jEdit, a text editor (109,925 LOC), and jForum, a
forum web application (30,064 LOC). We used four conditions,
Code Bubbles with and without vertical elision (CB, CB+VE),
Eclipse with and without vertical elision (E, E+VE).

For each application, we considered the following test cases:
Worst case (WC): the longest (largest LOC) functions in the ap-
plication. Random case (RC): a random selection of application

functions. Typical case (TC): all of the functions involved in a
specific feature from the application, chosen to be representative.

We compute three metrics for each of these cases: Simultaneous-
ly visible functions (SVF): the number of function declarations
one can see on screen simultaneously, without scrolling horizon-
tally or vertically. UI operations (UIOp): minimum number of UI
operations required to create a task relevant display with SVF
functions, where a UI operation is a command involved, e.g. res-
ize, move, scroll, “New Editor,” etc. Normalized UI operations
(NUIOp): UIOp divided by SVF.

A systematic approach was taken to analyze the mentioned me-
trics. First, both of the editors were standardized, using the same
font (Consolas 8), only package explorer pane opened (others
closed), and a 1900x1200 24” display. For both systems, we simu-
lated an optimal user who used an optimal UI manipulation strate-
gy to open as many functions as could fit on one screen without
overlap, and minimal scrolling. In Eclipse, tabs were docked into
panes as needed. Code Bubbles automatically reflows text if the
length of a line exceeds the width of the bubble. In Eclipse we
manually invoked its code formatting feature to fit the code with-
out horizontal scrolling. In Eclipse, the “New Editor” command
was used as needed to open files multiple times. When no more
functions from the test case could fit (opened in same order for
both conditions), we stopped the trial and computed UIOp and
SVF.

7.1.2 Results and Analysis
Results are presented in Table 1. Code Bubbles was able to show
more functions simultaneously (SVF) in every case. In the worst
case, the average increase from Eclipse to Code Bubbles (cols. 1,
2) was 83.33%; in the random case, 49.04%; in the typical case,
49.53%. With vertical elision (cols. 3, 4), in the worst case, the
average increase was 36.11%, in the random case, 28.55%; in the

Figure 2. Debugging with the Code Bubbles IDE. See section 6.5, Debugging, above.

460

typical case, 54.54%. This increase was likely due to the reduced
chrome in Code Bubbles, and differences in the reflow algorithm.
In real terms, developers would be able to see more methods in
Code Bubbles (col. 2), a sizeable number of functions, 11-17, in
the random/typical cases; the worst case provides a lower-bound
of 3-4 methods.

 SVF (higher is better) NUIOp (lower is better)

 E CB E+VE CB+VE E CB E+VE CB+VE

A
rg

oU
M

L
 WC 2 3 3 4 1.50 2.00 1.67 1.75

RC 10 16 16 21 2.60 1.25 2.81 1.33

TC 9 14 14 22 2.56 1.29 2.81 1.23

jE
d

it

WC 2 4 4 6 2.00 2.00 2.20 1.67

RC 11 16 16 20 3.00 1.19 2.71 1.25

TC 9 14 14 20 2.56 1.29 2.88 1.20

jF
or

u
m

WC 2 4 4 5 1.50 2.00 3.50 2.00

RC 12 17 17 22 2.67 1.29 2.88 1.36

TC 8 11 11 18 2.50 1.45 2.73 1.28

Table 1. Results of quantitative analysis of Eclipse (E) and Code Bubbles
(CB) with and without vertical elision (VE); column numbers circled.

Vertical elision increased SVF for both conditions, suggesting it
may be a beneficial alternative to scrolling vertically; in Eclipse
(cols. 1, 3) the increase ranged from 37.50% to 100.00%; in Code
Bubbles (cols. 2, 4), the increase ranged from 25.0% to 63.63%.
However, it appears that vertical elision could be an optional fea-
ture for users concerned about hiding code, since SVF was still
sizeable without it.

Perhaps the most important impact of Code Bubbles, however,
was in the area of UI operations (cols. 5, 6). In the random case
Code Bubbles reduced normalized UI operations by an average of
54.64% from Eclipse; in the typical case 47.07%. Interestingly,
when looking at specific worst case trials, Eclipse outperformed
Code Bubbles in 3 out of 6 trials; however the average difference
in the 6 worst case trials was less than 1%. This was likely due to
the small size of the working set in these cases, creating noise (2-4
functions for Eclipse).

These results indicate that with real-world code, one can expect to
be able to see a sizeable number of functions side-by-side in Code
Bubbles (cols. 2, 4), while expending less than half the number of
UI operations to create such a view than required by Eclipse
(close to 1 UI operation/function in most cases).

7.2 Qualitative User Evaluation
In addition to a controlled quantitative evaluation, we wanted to
get detailed, qualitative feedback from professional developers.
Professional developers are a very demanding customer. They are
expert users with significant experience using existing IDE(s). In
addition, they often pride themselves in working efficiently.
Therefore, one might reasonably expect them to be highly critical
of any new and fundamentally different application or user inter-
face, and thus an ideal population for a qualitative study.

In the study we asked the developers to perform a series of tasks
using Code Bubbles and to give detailed critical feedback based
on this hands-on experience. The feedback’s purpose was to im-
prove the design, to gauge its value to developers, and to under-
stand how developers might use the system in practice. The sys-
tem is still a prototype and is not ready for a production setting;
therefore we chose to do a more controlled lab study.

As this was a lab study, there are obvious limitations on the
study’s generality; however we believe it was sufficiently repre-
sentative for the experienced developers who participated to gene-
ralize to their workplace. We previously conducted an initial qua-
litative study of the core Code Bubbles metaphor [4]; in this study
we examine the additional features contributed in this paper.

7.2.1 Participants and Methodology
We recruited 23 professional developers (compensated) from the
Providence, RI and Boston, MA area (21 male, 2 female; mean
age 33.04, S.D. 9.47; reporting an average of approximately 10
years of industry experience). We advertised the study with Inter-
net ads so as to gather a diverse sampling of the developer popula-
tion; they hailed from organizations ranging from large enterprises
to small firms, and from a range of industries. Participants also
used a range of tools, including Eclipse, NetBeans, IntelliJ IDEA,
Visual Studio, VIM, XEmacs, and Notepad++. We required that
participants use the Java programming language on a regular ba-
sis, and to be actively employed in a software development role;
no members of our research group participated in the study.

After filling out a pre-questionnaire, participants were read an
introductory statement, introducing them to the user study, and
asking them to think aloud throughout the tasks they would be
working on. Participants were also asked to draw from past devel-
opment experiences in communicating their ideas and thoughts.
Participants were then asked to perform a series of tasks (see be-
low) using Code Bubbles. Participants were instructed on how to
use relevant features during each task as needed. The study lasted
approximately 1.5 hours. All trials used a 24” monitor running at
1920x1200x32-bit; total computer + monitor cost < $1,000 (US).

7.2.2 Task Context and Tasks
We evaluated the performance of Code Bubbles using a vector-
based drawing application we created, similar at a high level to
that used in [2] in Java, called ShapeDraw. The system is com-
prised of 44 classes, 280 methods, and 2,658 lines of code (mean
of 6.36 lines/function, S.D. of 13.20). To control for a priori
knowledge of API libraries such as Java Swing, we wrapped all
non-trivial APIs so as to not directly expose the programmer to
such APIs (we did not wrap common data structures, such as Lin-
kedList); we also structured the code to not involve algorithms,
protocols, databases, or file formats. Such knowledge is inherently
involved in working with open source applications which use a
variety of libraries, technologies, algorithms, etc. which some
participants might be less experienced with than others.

Participants worked on six tasks, each task requiring participants
to use different features of the system:

Code comparison: participants were asked to compare 5 methods
to understand the differences and relationships between them.

Code understanding: participants were given a particular method
as a starting point, and asked to understand the feature located
there by navigating and reading through part of the call graph
originating there (6 methods), and by examining an instance vari-
able’s references (3 methods). Participants were then asked to add
additional code to an existing method, and create a new method.

Simulated interruption and interruption recovery: participants
were asked to stop the code understanding task while only part
way complete, and switch to work on a different code understand-
ing task involving 3 methods. Once this high priority task was
complete, participants were asked to resume the interrupted task.

1 2 3 4 5 6 7 8

461

Debugging and dynamic program understanding: participants
were asked to investigate several bugs, and identify the source of
the problem: a runtime exception, whether two data structures
contain similar values to each other at different points in the pro-
gram's execution, and whether a simple numerical calculation is
outputting the correct values.

Sharing information: participants were tasked with sharing the
results and conclusions from their debugging session with another
person who was not on-site.

Debugging session comparison: participants were tasked with
repeating the data structure subtask, but this time inputting
slightly different interactions into the test program.

7.3 Observations
On the whole, developers were uniformly very positive, rating the
system 4.33 ± 0.26 (95% confidence interval) on a 5-point Likert
scale, in which 5.0 was “very convenient.” Of all the participants,
only one (a software architect who spent less than 10% of his time
working with code) said they would not consider adopting the
system as their primary IDE. When it came to learning to use the
system, developers rated it on average 3.39 ± 0.38, in which 3.0
was “neither easier nor harder” than other software.

Multiple developers asked whether specific build configurations
and plug-ins would be compatible; they were pleased to note that
since Code Bubbles is built on Eclipse, Eclipse is running in the
background and can handle many such tasks. They also noted the
lack of XML file support, citing this as an important needed fea-
ture.

Developers were very positive about reading and editing code in
bubbles. They felt being able to see multiple functions side-by-
side was very convenient; rating it an average of 4.7 ± 0.44 where
5.0 was “very convenient.” They rated Code Bubbles an average
of 4.04 ± 0.36 on a 5-point Likert scale where 5.0 was “much
easier,” for reviewing code than their preferred IDE. Interestingly,
4 of the 23 developers rated it below a 4.0; three of these partici-
pants worked primarily in a software architect role, and mentioned
that they did not write significant amounts of code on a day-to-
day basis. Developers preferred bubbles to Eclipse’s tabs and
found it useful for exploring new methods and classes.

7.3.1 Files and Writing New Code
When it came to writing new code in Code Bubbles, developers
felt they could use bubbles for most tasks, but there might still be
occasional tasks in which they would want to bring up a class file.
Many developers further mentioned that in the code bases in use
at their firm, classes tended to be very large and that seeing the
class as a file was not particularly useful most of the time. Three
developers reported that in Eclipse they tend to use the package
explorer for browsing rather than browsing in the file view, and so
their current workflow would not be impacted significantly mov-
ing to bubbles. Although they liked the techniques we developed
for writing new code, including budding and adding methods with
auto-complete, some developers still felt there might be situations
in which they would want to edit a whole file, most commonly for
writing a new class from scratch, but also for skimming through
and “tearing out” relevant methods into bubbles. Developers also
liked the ability to see an entire class through one menu item
click. These requests, and the fact that developers did not seem to
view function and class bubbles as mutually exclusive, led us to
develop the class bubble to handle situations in which seeing a
whole class was useful early in the development process.

Developers were excited that Code Bubbles encourages short
functions. They noted that file-based IDEs can discourage writing
short methods because they know that it will create navigation
overhead in the future. Developers all perceived shorter methods
as a positive thing, with several participants complaining at length
about the “mammoth” methods created by their coworkers.

All but one of the developers liked vertical elision, commenting
that it made long functions easier to “scan” and read, and further
commenting that in long methods they were frequently only inter-
ested in a particular section. Reflow, on the other hand, appeared
to involve personal preferences. A significant majority of devel-
opers liked or did not mind reflow, with some even commenting
that it made the code easier to read. However, three developers
felt that too much reflow could be distracting and the ability to set
a default minimum width for a bubble was needed.

7.3.2 Creating and Grouping Working Sets
Developers were unanimous in their enthusiasm for a working set-
based IDE. They liked being able to open different kinds of frag-
ments together in a working set saying, “opening Javadocs is pret-
ty cool. This is beautiful.” and “That's cool. I like it. For example,
I can use the notes feature to leave myself notes like ‘there is a
bug in the new drawPanel function’.” Developers also liked bug
bubbles, one developer saying “[I] could see how [a bug bubble]
could become the anchor point of the relevant task.” Several de-
velopers felt that sometimes bubbles would only be needed for a
short time and asked for the ability to open a code or Javadoc
bubble in a temporary preview.

Developers were similarly enthusiastic about grouping related
bubbles. They thought they would create groups “on the spur of
the moment” and had many spontaneous ideas on how they might
use groups, including organizing relevant subsets of a large exist-
ing feature; comparing two versions of a feature; “color coding
who is doing what”; as a supplement to the organization provided
by packages and classes; and using them as an onscreen visual
association and reminder. They also liked the ability to save and
recall groups. In particular, developers liked the idea of using
group information to discover related code – either in revisiting
their own, or that of others. Developers liked the ability to search
for groups by name and contents; several developers went further
to suggest the idea of being able to search for groups by the text
contents of note bubbles included in a group. One developer sug-
gested adopting a practice in which groups were used to document
by example how to do something, e.g. if using a particular com-
ponent was counter-intuitive, a reusable example could be saved
as a group, along with a note bubble explaining the process. One
developer thought that it was too easy to make groups; that they
should be explicitly defined.

7.3.3 Interruptions and Multi-tasking
Developers liked using the workspace bar to take advantage of a
large virtual workspace. They liked the continuous nature of the
workspace, complaining that they found discrete virtual desktop
managers to be “confusing” and that individual desktops tended to
“fill up.” Developers appreciated the ability to label areas of the
bar, being able to switch between different tasks, and the ease
with which they could begin a new task and resume a pre-existing
task. They felt working sets could replace their hand-written notes
and would help with this recovery process because the set of bub-
bles combined with notes and flags represented much of what they
had to remember for the original task.

462

Four developers asked for the ability to save and close workspace
bar tasks so that they could be used later, further telling us that
once they had created a task it would be very useful to return to it
later. This led to our implementation of the task shelf. Five devel-
opers asked for the ability to open multiple projects in different
regions on the workspace bar so that they could easily switch
between them and potentially reuse functionality across projects.

7.3.4 Debugging
Developers were excited by the prospect of debugging with bub-
bles; in some cases even urging us to implement a breakpoint
debugger using bubbles early in the experiment before it was
shown to them. They rated the debugger highly; an average of
4.55 ± 0.47 where 5.0 is “Very Convenient.” All of the developers
liked seeing the broader context of multiple items in the stack
frame side-by-side, and seeing new bubbles open as step into and
breakpoint events caused the call stack to change. Developers did
not miss flipping back and forth through the call stack. They fur-
ther liked being able to open data structure values in bubbles as
part of their working set, with many developers commenting that
it was useful to be able to see values from more than one location
in the call stack simultaneously, allowing them to “compare and
contrast.” Several developers asked for the ability to collapse parts
of the call graph hierarchically using contract/expand widgets, as
they were concerned that inactive branches could be irrelevant in
some cases and they would want to close them. One developer
was initially opposed to the idea of opening a bubble multiple
times in a recursive calling sequence, but later changed his mind
in favor of seeing the function at “different points in time.”

All but one of the developers were enthusiastic about the idea of
directing printouts to multiple named console bubbles, mentioning
that they liked being able to separate event streams when needed
so they could be examined separately, and also mentioning that as
the number of printout sources accumulated in a project, it could
become difficult to see the printouts they were interested in. One
developer said that he made extensive use of logging frameworks,
and although he liked seeing multiple consoles side-by-side, he
found our implementation limiting.

Developers were also positive about saving debug sessions, men-
tioning in particular that it was useful to be able to compare in-
formation across separate runs of the program, and to revisit de-
bugging information. They perceived value in being able to com-
pare before and after runs of a program. They also mentioned that
they sometimes needed to repeat a complete debugging session
due to missing or not noting something. Developers also liked the
fact that all of the console bubbles are preserved in a saved debug
session. Several developers mentioned that since they were now
able to see several debug sessions simultaneously they would like
the ability to “diff” them, to identify differences in probed data
structure values. Developers liked the channels interface we de-
veloped for debug sessions and several developers suggested that
the same interface could be used to debug multiple threads, or
multiple distributed applications, simultaneously.

7.3.5 Sharing and Working Together
Using bubbles to share information was of nearly universal inter-
est to the developers, with nearly all developers spontaneously
voicing ideas on different ways this would be useful. Developers
liked the fact that the visual representation of bubbles closely
mimicked what would be needed for a visual explanation to
another person. Five developers suggested using working sets for
code reviews. Developers further liked the idea of adding notes or

flags to a debug session and then posting it as a PDF to a bug
report in a bug tracker. They appreciated the ability of using a
working set for explaining code and for transitioning a feature
from one person to another, as well as the idea of using working
sets to ask questions, get feedback, and make in-person presenta-
tions. Developers liked both the ability to send a working set as an
XML file, and also as a platform-independent PDF; this led us to
add support for PDF export and attaching a working set to a new
email with one command.

Five developers also spontaneously suggested using the work-
space bar as a way of enabling real-time collaboration and coordi-
nation. Developers suggested allocating a section of their work-
space to be shared live with someone else, to allow one developer
to potentially help another, either for a short or prolonged task, in
real-time. Several developers also suggested integrating instant
messaging so that a developer could share their workspace and
ask a quick question, and get feedback in real-time.

8. LIMITATIONS
While the above studies show that the Code Bubbles approach has
promise, there are limitations both with the prototype implementa-
tion and in extending the concepts to large-scale development.

The prototype implementation of Code Bubbles is limited in sev-
eral ways. It is resource-intense, requiring a modern dual-core
CPU or better, a hardware-accelerated graphics card, and either
one large (24”) or two smaller (19”) monitors to be effective.
Large numbers of bubbles tend to degrade display performance.
Developers expressed concern about the effectiveness of bubbles
on small monitors. Many features one might expect in a complete
IDE are missing: support for programming languages other than
Java, portability, GUI designers, unit testing, XML files, HTML
designers, database designers, and performance monitoring. The
editor provided by Code Bubbles is not as sophisticated as modern
program editors such as Eclipse’s or Visual Studio’s. Also many
of the features of Eclipse, for example quick fixes for errors and
refactoring other than naming, are not yet implemented.

Storing bubble references in general and working sets in particular
is currently done using fully-qualified method signatures. This
would be problematic in a real development environment where
functions are renamed, deleted or moved among classes. This
problem could be ameliorated by storing workspace information
using file offsets, and applying the techniques developed in [30].

The debugging interface is currently optimized for problems in
which an error in part of the call tree manifests immediately in the
same branch of the tree. More investigation is needed as to how to
assist programmers in developing appropriate debugging working
sets for more general debugging problems.

One advantage that files have over working with code fragments
is that they can provide a readable and long-lasting context for
programmers who need to read an entire class.

9. DISCUSSION AND FUTURE WORK
On the whole, the high level of interest, excitement and range of
usage ideas from developers was a surprising result, given the
limitations of our prototype, the radical change from what devel-
opers are used to, and the level of experience of the participants.
We believe this indicates that developers perceive significant
value in a working set-based user interface paradigm for IDEs.

The use of a working set-based user interface paradigm in Code
Bubbles appears to have changed the cost structure of using work-
ing sets to aid in completing tasks; developers did not have to

463

explicitly create a working set from scratch to use one, rather they
“get it for free” as part of their normal workflow. As a result,
annotation tools such as groups, flags, notes, connections, etc. are
always available, making them something developers can count
on regardless of task. This change in cost structure means that
working sets can be employed more often, which impacts a varie-
ty of tasks, as we will discuss here.

Developers liked being able to offload information from their
limited working memory by storing information in the working
set in the form of bubbles and annotations. Furthermore, they
liked being able to position bubbles for convenience and ease of
access, to take advantage of efficiency gains derived from spatial
proximity and spatial memory. Developers also liked being able to
access their code in a non-architectural, task-oriented structure.

Working sets also facilitated comparison tasks, by allowing de-
velopers to compare information in one or more bubbles side-by-
side. We observed developers take advantage of this in a range of
instances from examining debugging values over time, to under-
standing a call graph encompassing a handful of functions.

Users felt that annotated working sets can also readily be used to
share information with other users. This same value in communi-
cating information to others also applies when a user needs to
revisit information; developers liked how working sets support
interruption recovery and multi-tasking. Also as a result, persist-
ing working sets also had value for developers, making it easy to
revisit and leverage working sets users created in the past.

From our observations we believe that the working set paradigm
manifested itself in the wide variety of ingenious and unexpected
ideas users voiced on how they might use Code Bubbles. This
enthusiasm seemed to reflect the perception that the system could
be used to aid in a variety of open-ended tasks, such as code re-
views, storing examples as groups, posting PDF working sets as
bug reports, transitioning a feature from to another person, etc.
We were surprised by the extent to which developers sought to
employ the system in solving problems that we had not explicitly
designed it to solve, suggesting that if used in the workplace, the
system could be adaptable in serving a wide variety of needs.

These results provide a rich basis for future work and research.
We are currently investigating different approaches to using bub-
bles for debugging and means for using bubbles for code sharing
and cooperative development. Future directions we are consider-
ing include extending bubbles to other aspects of software devel-
opment, in particular UML-based design, performance analysis,
testing; adapting the framework for other languages; and extend-
ing the debugging capabilities to provide a more effective envi-
ronment. In addition, further empirical studies with professional
developers and with students are warranted, once sufficient fea-
tures and stability have been implemented.

10. CONCLUSION
We have presented a novel user interface paradigm for an inte-
grated development environment. This paradigm is based on
working sets of fine-grained, editable fragments, or bubbles. We
also presented two evaluations of this system to better understand
how it might perform, be used, and benefit professional develop-
ers. The results indicate that a working set-based IDE, such as
Code Bubbles, has the potential to benefit a wide range of devel-
opment tasks in substantial code bases, including reading, editing
and navigating source code, tagging and discovering related func-
tions, interruption recovery and multitasking, breakpoint debug-
ging and sharing and explaining information.

11. ACKNOWLEDGMENTS
The authors wish to thank Andries van Dam and Ken Hinckley for
their advice and insight, and Donnie Kendall, David Eichler, Sal-
man Cheema, Jared Bott, Jeff Coady and Max Salvas for their
assistance. This material is based upon work supported under a
National Science Foundation Graduate Research Fellowship and
in part by NSF grants IIS-0812382 and CCR-0613162.

12. REFERENCES
[1] Erlikh, L. Leveraging Legacy System Dollars for E-Business. IT Pro,
May/June (2000), 17-23.

[2] Ko, A. J., Myers, B. et al. An Exploratory Study of How Developers Seek,
Relate, and Collect Relevant Information during Software Maintenance Tasks.
IEEE TSE, 32, 12 (Dec. 2006), 971-987.

[3] Plumlee, M. D., Ware C. Zooming versus multiple window interfaces:
Cognitive costs of visual comparisons. ACM ToCHI, 13,2 (6/06), 179-209.

[4] Bragdon, A. et al. Code Bubbles: A Working Set-based Interface for Code
Understanding and Maintanence. In Proceedings of CHI 2010.

[5] Murphy, G. C., Kersten M, et al. How are Java software developers using
the Eclipse IDE? IEEE Software, 23, 4 (July/August 2006), 76-83.

[6] Robillard, M. P., et al. How effective developers investiage source code: An
exploratory study. IEEE TSE, 30, 12 (Dec. 2004), 889-903.

[7] Sherwood, K. D. Path exploration during code navigation. UBC, 2008.

[8] Reiss, S. P. Simplifying data integration: the design of the Desert software
development environment. In ICSE’96, 398-407.

[9] Reiss, S. P. The Desert environment. ToSEM, 8, 4 (1999), 297-342.

[10] Nackman, L. R. An overview of Montana. IBM Research (1996).

[11] Stockton, R. et al. The Sheets hypercode editor. CMU, 1993.

[12] Ingalls, D., Kaehler, T., Maloney, J., Wallace, S., and Kay, A. Back to the
future: the story of Squeak, a practical Smalltalk written in itself. In Proceed-
ings of OOPSLA'97, 318-326.

[13] Ungar, D. and Smith, R. B. Self: The power of simplicity. In Proceedings
of OOPSLA'87, 227-242.

[14] Cockburn, A. et al. Hidden messages: evaluating the efficiency of code
elision in program navigation. Interacting with Computers (2003), 387-407.

[15] Jakobsen, M. and Hornbaek, K. Evaluating a fisheye view of source code.
In Proceedings of CHI’06, 377-386.

[16] Coblenz, M. et al. JASPER: An Eclipse plug-in to facilitate software
maintenance tasks. In OOPSLA Workshop on Eclipse Tech. 2006, 65-69.

[17] Cubranic, D., Murphy G. C. Hipikat: recommending pertinant software
development artifacts. In ICSE’03, 408-418.

[18] Singer, J., Elves, R., and Storey, M. A. Navtracks: supporting navigation
in software. ICPC’05, 173-175.

[19] Kersten, M. et al. Mylar: degree-of-interest model for IDEs. AOSD '05.

[20] Kersten, M. and Murphy, G. C. Using task context to improve programmer
productivity. In SIGSOFT 06/FSE 14 (2006), 1-11.

[21] DeLine, R., Czerwinski, M., and Robertson, G. Easing program
comprehension by sharing navigation data. VL/HCC 2005, 241-248.

[22] Dragunov, A. et al. TaskTracer: a desktop environment to support multi-
tasking knowledge workers. IUI, 2005, 75-82.

[23] Zhang, J. Idewaypoint: support task-oriented IDE navigation. Univerisity
of Victoria, 2006.

[24] Majid, I. et al. NaCIN: an Eclipse plug-in for program navigation-based
concern inference. In OOPSLA Workshop on Eclipse Tech. ’05, 70-74.

[25] Robillard, M. P. Murphy G. C. FEAT: a tool for locating, describing, and
analyzing concerns in source code. In ICSE ‘03, 822-823.

[26] Robillard, M. P. et al. ConcernMapper: simple view-based separation of
scattered concerns. In OOPSLA workshop on Eclipse Tech. (2005), 65-69.

[27] Lintern, R. et al. Plugging-in visualization: experiences integrating a
visualization tool with Eclipse. In SoftVIS '03 (2003), 47-56.

[28] Ko, A. J. et al. Debugging Reinvented: Asking and answering why and
why not questions about program behavior. In ICSE’08, 301-310.

[29] Reiss, S. P. Connection tools using message passing in the FIELD
environment. IEEE Software, 7, 4 (July 1990), 57-67.

[30] Reiss, S. P. Tracking source locations. In ICSE’08, 11-20.

464

