Problem: Draw a control flow diagram for this function. Label each edge with an uppercase letter.

int funWithNumbers(int a, int b) {
if (a > b) {
while (a >= b) {

a -=1;
b += 1;
}
} else {
b += a;

}

return b;

Solution:

: ®
\F(a >b)?; Trve e (a >
/ @ True

Problem: Fill in the table below with a test suite that provides path coverage of the code from the previ-
ous question. Cover no more than 2 iterations of the loop. In the covers column, list the relevant labeled
items in your CFG that each test case covers. If there is some part of the coverage that is impossible to
cover, then list it in the covers column, and put “N/A” in the associated x and y cells. Some cells in the
table may be left blank.

Input

Covers

Solution:

In

put

= v Covers
\ 2 AD
N/A N/A Bc. |
l o) BEEC
4 2 REFEEC

Problem: Draw a control flow diagram for this function. Label each node in the graph with a capital let-
ter, and label each edge with a lowercase letter.

int blammo (int u, int v) {
int t;
while (v != 0) {
t = u;
u = v;
v =t % v; // Recall that % computes remainder of t/v
}
if (u < 0) { return -u; }
return u;

Solution:

retuen =u A

Problems:

1. Fill in the table below with a test suite that provides statement coverage of the “blammo” code. In the
covers column, list the relevant labeled items in your CFG that each test case covers. Some cells in
the table may be left blank.

Input

Covers

2. Fill in the table below with a test suite that provides path coverage of the “blammo” code. Cover no
more than 1 iteration of the loop. In the covers column, list the relevant labeled items in your CFG
that each test case covers. Some cells in the table may be left blank.

Input

Covers

Solutions:

L.

Input —
Q- A'BICIE
.—" O A’ C, D
- Covers
-1 o) A ¢
0 o a,d
—'2. "2- b' e, q! L
L 2- b'Ql q. d
PA'H\:Z
Qa,c
a,d
b,&,4,C
bae-,ﬁ.d\

Problem: Draw a control-flow graph for the following function. Label each edge in the graph with an
uppercase letter.

def min_of_three(x, y, 2)
if X <y then
if X < z then
return X
else
return z
end
else
if y < z then
return y
else
return z
end
end
end

Solution:

Problem: Fill in the table below with a test suite that provides path coverage of themin of three
function from the previous question. In the covers column, list the relevant labeled edges in your CFG
that each test case covers. Some cells in the table may be left blank.

Input Expected
X y z Output

Covers

Solution:

_ In§ut Egif;ftd Covers
| 2 | A B, C

) 3 \ A D, E

7. , | F, G, H

3 2 | F. I, J

Consider the following control-flow graph for a gcd function in answering the questions below.

return x

False

@ True

Problem: Fill in the table below with a test suite that provides condition coverage of the gcd function
(see control-flow graph above). In the Covers column, list the relevant labeled edges in the CFG that each
test case covers. Some cells in the table may be left blank.

Input Expected
X y Output

Covers

Problem: Fill in the table below with a test suite that provides path coverage of the gcd function (see
control-flow graph above). In the Covers column, list the relevant labeled edges in the CFG that each test
case covers. Some cells in the table may be left blank. You need only cover executions that involve 1 iter-
ation of the loop.

Input Expected
X y Output

Covers

Solution: Condition Coverage

——p [y Covers
l l l A
S 2 | | B¢ E, g
A
4l | I | BC b, G
&
£
s
3 1 ¢ D CE G
Solution: Path Coverage
Inpu xpecte
% s y EO?Jtpfltd Covers
| I \ A
7 | ! B,C,D.H G
l 2 l B, C E FEQ

B, G € not posnble

Consider this binary-search function and its associated control-flow graph.

binary_search(array, key, imin, imax)
imin imax
imid = Gimin + (Cimax - imin) / 2)).to_i;
array[imid] key
imid
array[imid] key

imin imid 1

imax imid

AA

False

imid (imin ((imax - imin) 2)).to_1;
array[imid] key

imid

array[imid] key

False

imin = imid

1max imid

Problems:

Consider the following test cases for the binary search function.

array key imin imax
a. [1] 0 0 0
b. [1] 1 0 0
c. [1] 1 1 0
d [1, 2, 3] 1 0 2
e. [1, 2, 3] 2 0 2
f. [1, 2, 3] 3 0 2
g [1, 2, 3] 1 2 0
h. [1, 2, 3] 2 2 0
i [1, 2, 3] 3 2 0

1. Select tests from the above to create a test suite that provides statement coverage of the bina-
ry_ search function. Your suite should contain the minimum number of tests to provide the cover-
age.

2. Select tests from the above to create a test suite that provides condition coverage of the bina-
ry_ search function. Your suite should contain the minimum number of tests to provide the cover-
age.

3. Select tests from the above to create a test suite that provides path coverage of the binary search
function. Cover only paths that contain one loop iteration or fewer (i.e., no path should enter the loop
more than once). Your suite should contain the minimum number of tests to provide the coverage.

Solutions:

False @ True

Q

imid = Cimin « (Cimax - imin) / 2)).to_i;
if array[imid] key

@)ralse (@) True

imin = imid

Q!
SN
Statdments Edges”
array key imin imax Covered Covered
a. [1] 0 0 0 ABDFAG 1
b (1] 10 0 ABC il
c. [1] 20 0 AB DEAG 23071
d_[1, 2,31 1 0 2 ABDFABC 235824
e. [1, 2, 3] 2 0 2 ABC 24
f. (1, 2, 3] 3 0 2 ARDEABC 236724
g 1, 2, 3] 1 2 0 Ag |
h. (1, 2, 3] 2 2 0 AG]
i [1, 2, 3] 3 2 0 A(ﬂ]
1.
a, F or c,d
2.
a_.F or C, d
_ (Need 4o cover edser |, 2, 3, 4, 5, ()
3.

(ah.\i),(b!e) C, a c

(O P \‘r ‘ . Tests that cover

' ' h °
Any 1 of Myl of 24 '?,',;'
+hese these 236 ¢’

23 581 a

Problems:

Consider the following test cases for the binary search function.

array key imin imax
a. [0] 0 0 0
b. [0] 1 0 0
c. [0] 1 1 0
d [0] -1 0 0

1. Select tests from the above to create a test suite that provides statement coverage of the bina-

ry_ search function. Your suite should contain the minimum number of tests to provide the cover-
age.

2. Select tests from the above to create a test suite that provides condition coverage of the bina-

ry_ search function. Your suite should contain the minimum number of tests to provide the cover-
age.

3. Select tests from the above to create a test suite that provides path coverage of the binary search

function. Cover only paths that contain one loop iteration or fewer (i.e., no path should enter the loop
more than once). Your suite should contain the minimum number of tests to provide the coverage.

Solutions:

if array[imid] == key

imin = imid + 1

imid = Cimin + (Cimax - imin) / 2)).to.1i;

Stadepads Cowred | Coditiogy Covered

array key imin imax
a. [0} 0 0 0 ABC 14 J—
b. [0] 1 0 0 AB | 23061,
c. [0] 1 1 0 A G J
d._10] -1 0 0 ABDFG | 2381l —"
Path Coyered Ly
A G V)
ABC a
_ABDEAG G
ARDFAG |d
1. a,b,d
2. ab,d
3. a,b,c,d

Consider this figure in answer the following questions.

def find smallest(array)
smallest = array[0]
i=1
while i < array.length
if array[i] < smallest
smallest = array[i]

end
i=41i+1
end
return smallest

end

Figure 1. Function that finds the smallest value in an array.

Problem:

Draw a control-flow graph (CFG) for the function in Figure 1. In addition to the usual CFG features, label
the nodes with capital letters (A, B, C, etc.), and label the edges with numbers (1, 2, 3, etc.). Don’t forget
to include entry and exit points.

Solution:

(@
|
soerevylo])
iz |

@
‘ while 1« afr«y.l —
—-@— \

A +rve
—\ N\

@ | ¥ weayCid < slled \

Yrve
® |uine @ [klse

redvea ﬂ\t.-“&’f

)

©

e

Problems:
Use the CFG you created for the function in Figure 1 to answer the following questions.

1. Fill in the table below with a test suite that provides statement coverage. In the Covers column, list
the letter labels (A, B, C, etc.) of the nodes covered by each test case.

Input Expected
array Output

Covers

2. Fill in the table below with a test suite that provides branch coverage. In the Covers column, list the
number labels (1, 2, 3, etc.) of the edges covered by each test case (only true/false edges needed).

Input Expected
array Output

Covers

3. Fill in the table below with a test suite that provides path coverage. In the Covers column, list the
number labels (1, 2, 3, etc.) of the edges covered by each test case. You need only cover executions
that involve at most 1 iteration of each loop (if there are any). Before you fill in the table, list all the
paths to be covered.

Paths:

Input Expected

Covers
array Output

Solutions:

Multiple solutions are possible. These are just examples of correct solutions.

L.
Input Expected
array Output Covers
E',OJ O A:B,C':D,E, B'F
2.
Input Expected
array Output Covers
>
£1,0,27 o 3,5,4,2
3.
- I . YA
- ’l 3 2 s]
- 1, 3, 4
Input Expected
array Output Covers
LCod o 2
E'lOJ o ‘13I9I607IZ
Lo.13 0 b, Slq' 7,2.

Consider this figure in answer the following questions.

def average(array)
sum = 0
i=1
while i < array.length
sum = sum + array[i]
i=1i+1
end
return sum/array.length
end

Figure 2. Buggy function that computes the average value of an array of numbers.

Problem:

Draw a control-flow graph (CFG) for the function in Figure 2. In addition to the usual CFG features, label
the nodes with capital letters (A, B, C, etc.), and label the edges with numbers (1, 2, 3, etc.). Don’t forget
to include entry and exit points.

Solution:

NT
c
2|F F +
12+l
)
end
retwra sum/array. lingtl

Problems:
Use the CFG you created for the function in Figure 2 to answer the following questions.

1. Fill in the table below with a test suite that provides statement coverage. In the Covers column, list
the letter labels (A, B, C, etc.) of the nodes covered by each test case.

Input Expected
array Output

Covers

2. Fill in the table below with a test suite that provides branch coverage. In the Covers column, list the
number labels (1, 2, 3, etc.) of the edges covered by each test case (only true/false edges needed).

Input Expected
array Output

Covers

Solutions:

1.
Input Expected < .
array Output Covers
L3 I ABC.D
2.
Input Expected Covers
array Output
E-" ‘] I Sl z

Problem:

Fill in the table below with a test suite that provides path coverage. In the Covers column, list the number
labels (1, 2, 3, etc.) of the edges covered by each test case. You need only cover executions that involve at
most | iteration of each loop (if there are any). Before you fill in the table, list all the paths to be covered.

Paths:

Input Expected
array Output

Covers

Solution:

Paths:

- 1,2,4.2

Input Expected
array Output

Covers

L | 1,2

L1,1] l ,3,4,2

Question:

Which, if any, of your above three test suites would have caught the bug in the function?

Solution:

All of the above test svites wowld have cavgd tle bug.

Problems:

Consider this function.

def is_ it xmas?(month, day)
if month == 12 && day == 25
return true
else
return false
end
end
1. Draw a control-flow graph for the function. In addition to the usual CFG features, label the nodes

with capital letters (A, B, C, etc.), and label the edges with numbers (1, 2, 3, etc.).

2. Fill in the table below with a test suite that provides statement coverage. In the Covers column, list
the letter labels (A, B, C, etc.) of the nodes covered by each test case.

Input Expected
month day Output

Covers

The function is correct to the best of my knowledge.

3. What change to a line in the function would introduce a bug that your above test suite catches?

4. What change to a line in the function would introduce a bug that your above test suite does not catch?

5. Fill in the table below with a test suite that provides branch coverage. In the Covers column, list the
number labels (1, 2, 3, etc.) of the edges covered by each test case (only true/false edges needed).

Input Expected
month day Output

Covers

The function is correct to the best of my knowledge.

6. What change to a line in the function would introduce a bug that your above test suite catches?

7. What change to a line in the function would introduce a bug that your above test suite does not catch?

8. Fill in the table below with a test suite that provides path coverage. In the Covers column, list the
number labels (1, 2, 3, etc.) of the edges covered by each test case. You need only cover executions
that involve at most 1 iteration of each loop (if there are any).

Input Expected
month day Output

Covers

The function is correct to the best of my knowledge.

9. What change to a line in the function would introduce a bug that your above test suite catches?

10. What change to a line in the function would introduce a bug that your above test suite does not catch?

Solutions:

1.

O

_ Y

@ (F thonth == 12, LE Aday 2 JC \
T — 7 I

trve.

R ‘ Blse @

W
tetven {V()&v‘l(

Input

day

Expected
Output

Covers

71

P

N

Ny

] -y
()i AN == L : gjl AN Z b
f 1
day =z 25 —> day 25

Input Expected Covers
month day Output
-~ : T~
| 2 2.4 Else l
- 7 - 1 7
| L Zs Tvue -
(j[,\\/‘ xz 2 -———-—\; Aoy == 2‘4‘
! T
(,)(AN < 2_ I:; v———'% {ié\\;‘l > = A{\,[Z’

Expected

loput Covers
month day Output
i ‘% (:_L.}} el ye. i
L 25 +rue A
0.
day =z 25 —> day = Z¢
! 7
10.
d(;;y 2 725 > Aoy P2 2
1

Consider this function.

def min of three(x, y, 2z)
if x < y then
if x < z then
return x
else
return z
end
else
if y < z then
return y
else
return z
end
end
end

1. Draw a control-flow graph for the function. In addition to the usual CFG features, label the nodes
with capital letters (A, B, C, etc.), and label the edges with numbers (1, 2, 3, etc.).

2. Fill in the table below with a test suite that provides statement coverage. In the Covers column, list
the letter labels (A, B, C, etc.) of the nodes covered by each test case.

Input Expected
X y z Output

Covers

The function is correct to the best of my knowledge.

3. What change to a line in the function would introduce a bug that your above test suite catches?

4. What change to a line in the function would introduce a bug that your above test suite does not catch?

5. Fill in the table below with a test suite that provides branch coverage. In the Covers column, list the
number labels (1, 2, 3, etc.) of the edges covered by each test case (only true/false edges needed).

Input Expected
X y z Output

Covers

The function is correct to the best of my knowledge.

6. What change to a line in the function would introduce a bug that your above test suite catches?

7. What change to a line in the function would introduce a bug that your above test suite does not catch?

8. Fill in the table below with a test suite that provides path coverage. In the Covers column, list the
number labels (1, 2, 3, etc.) of the edges covered by each test case. You need only cover executions
that involve at most 1 iteration of each loop (if there are any).

Input Expected
X y z Output

Covers

The function is correct to the best of my knowledge.

9. What change to a line in the function would introduce a bug that your above test suite catches?

10. What change to a line in the function would introduce a bug that your above test suite does not catch?

Solutions:

@ it x< 2 ”«2»’\"—‘—'—"5 return)'C)F

l\ v_ 2 . ©
N

e
-
\ \ A T—”'—@“““l B
AR ;hl T e ‘\i}f
WPARAT }I ceborn 2 [‘ ANy
{ th __ \A‘\\
—~. else 2 =2 &
E(W F >I<Z. {hen %QQJ (F} /
L\J__N] .
N reuvn AR
\\ 7 ¥
N\

Input Expected

X y z Output Covers

A

3 P ~ q I:
~ () A kg
X <Ny — X >
; .
retorn X > cSurn N = X

Input Expected

X y 7 Output Covers
i Z S f 1,3

I A J | 0 : o4

z \ S E)

- | 0 0 | L6

‘.”’C:‘}"J N < -7 ’c’e’f’j’ (D180 v - X

Input Expected
p p Covers
” y z Output
i 1 . f, { b f 3
i 2 O (& A P |
77
7 i 0 o e
X <y —> x %}j]
[
ceIura x —> redurn y =X
/

Problems:

Consider this function.

def gcd(x, y)

if x ==
return y
end
if y ==
return x
end
while x !=y
if x>y
X =X -9
else
Y=y -—-X
end
end
return x

end

1. Draw a control-flow graph for the function. In addition to the usual CFG features, label the nodes
with capital letters (A, B, C, etc.), and label the edges with numbers (1, 2, 3, etc.).

2. Fill in the table below with a test suite that provides statement coverage. In the Covers column, list
the letter labels (A, B, C, etc.) of the nodes covered by each test case.

Input Expected
X y Output

Covers

The function is correct to the best of my knowledge.

3. What change to a line in the function would introduce a bug that your above test suite catches?

4. What change to a line in the function would introduce a bug that your above test suite does not catch?

5. Fill in the table below with a test suite that provides branch coverage. In the Covers column, list the
number labels (1, 2, 3, etc.) of the edges covered by each test case (only true/false edges needed).

Input Expected
X y Output

Covers

The function is correct to the best of my knowledge.

6. What change to a line in the function would introduce a bug that your above test suite catches?

7. What change to a line in the function would introduce a bug that your above test suite does not catch?

8. Fill in the table below with a test suite that provides path coverage. In the Covers column, list the
number labels (1, 2, 3, etc.) of the edges covered by each test case. You need only cover executions
that involve at most 1 iteration of each loop (if there are any).

Input Expected
X y Output

Covers

The function is correct to the best of my knowledge.

9. What change to a line in the function would introduce a bug that your above test suite catches?

10. What change to a line in the function would introduce a bug that your above test suite does not catch?

Solutions:

1.

(V},{, - %
@‘F&\bc v } dj‘;:)/""——/

i

!
W

@; reduta X ,‘

L

Input Expected Covers
X y Output
6} % { /l‘; 5
é O i A, c, D
? / - - - i P
5 2 i A ¢, E ,- {*i 6 E,F, r
=2 O —> x 2= O

Input Expected Covers
X y Output
O i i {
- P - v

: fi) ! N

3 2 @ 2 - Y

- N ESEVREN AR AL
X =20 = x >0
3 - X - -

Input Expected
Covers
X y Output
o z 5 l
I O { > 3
i ﬁ { lr"f,!@
2. z e 2,4.5,6, 7,10
g) | 2,4, 57,4, 10
=hs
— |
- 2,3
t — Zi(;i'! ‘”‘)
| = 2,45 6,7
g “y ;00,7 Lo
A} - ZIL}“_Si g'qx “‘?
9.
¥ = (’:) ~—-:§ b ?3 C)
10.
re¥orn v rJvra |
7

Problems:

Consider this function.

def

end

binary search(array, key)
imin = 0
imax = array.length - 1
while imin <= imax
imid = (imin + ((imax - imin) / 2)).to_ i
if array[imid] == key
return imid
elsif array[imid] < key
imin = imid + 1
else
imax = imid - 1
end
end
return -1

L.

Draw a control-flow graph for the function. In addition to the usual CFG features, label the nodes
with capital letters (A, B, C, etc.), and label the edges with numbers (1, 2, 3, etc.).

2. Fill in the table below with a test suite that provides statement coverage. In the Covers column, list
the letter labels (A, B, C, etc.) of the nodes covered by each test case.

Input Expected
array key Output

Covers

The function is correct to the best of my knowledge.

3. What change to a line in the function would introduce a bug that your above test suite catches?

4. What change to a line in the function would introduce a bug that your above test suite does not catch?

5. Fill in the table below with a test suite that provides branch coverage. In the Covers column, list the
number labels (1, 2, 3, etc.) of the edges covered by each test case (only true/false edges needed).

Input Expected
array key Output

Covers

The function is correct to the best of my knowledge.

6. What change to a line in the function would introduce a bug that your above test suite catches?

7. What change to a line in the function would introduce a bug that your above test suite does not catch?

8. Fill in the table below with a test suite that provides path coverage. In the Covers column, list the
number labels (1, 2, 3, etc.) of the edges covered by each test case. You need only cover executions
that involve at most 1 iteration of each loop (if there are any).

Input Expected
array key Output

Covers

The function is correct to the best of my knowledge.

9. What change to a line in the function would introduce a bug that your above test suite catches?

10. What change to a line in the function would introduce a bug that your above test suite does not catch?

Solutions:

1.

-_-———-9-1 {Min =

Lo = ARy ’6’5‘?{‘ ~/{ &

Z
e ——
s < AN EHIRy =y 0 2 S 5 = I
‘ vihile min <o imac EM
S P e e

Q) v,

R MQYLJ“G‘] VL)/

e ® W /
. D LQII;.F A E"‘\d] K&yL———-—) AR

elye ~
@ ATV "!"\(c‘. “rz\ /

_&d \

7

GO vrodura = /

s

Input

Expected

array

Output

Covers

|

L -

-~

Erﬁ,"fo,’«?n,%,tf,, P
[

ol

>

Pt

e

el }Uf‘m

Input

Expected

array key Output Covers

(:m :J E;JP w}
N R ’} <-i L‘f“ g i
i i

*T} i

-|

—

P | -~
 eF0en (_)

%/fd’”um

il My :}

—>

v’"‘t}uf’ [a) LZL

Input Expected Covers
array key Output
- = P - | q 5
J 1 | 14
L ! e
3 { -7
ﬁ’:_,. i ? (/WJ {/ { (J(, l,: Z
pEPE j -~ oy 7 -
Cal b [N DR
- b T} A B ’ OZ! { / ; L’ / '? / X
e
Peths e
— A
- 2
I o ‘%'fr};"?)é}u;
! - d "5 ‘;,7,&7J
9.
y’{’_j\?) a1) / }Tji)ff\ {’J
10.

T {3’(__,‘;",’\ ;»"’\. (i\ ”—% \m(-.}l Ui .‘

Problems:

def sum the first n(array, n)

sum = 0

i=0

while i <= n && i < array.length
sum = sum + array[i]
i=1i+1

end

return sum

end

Figure 3. Buggy function that sums the first » numbers in an array.

1. Draw a control-flow graph (CFG) for the function in Figure 3. In addition to the usual CFG features,
label the nodes with capital letters (A, B, C, etc.), and label the edges with numbers (1, 2, 3, etc.).
Don’t forget to include entry and exit points.

Use the CFG you created for the function in Figure 3 to answer the following questions.

2. Fill in the table below with a test suite that provides statement coverage. In the Covers column, list
the letter labels (A, B, C, etc.) of the nodes covered by each test case.

Input Expected
array n Output

Covers

3. Fill in the table below with a test suite that provides branch coverage. In the Covers column, list the
number labels (1, 2, 3, etc.) of the edges covered by each test case (only true/false edges needed).

Input Expected
array n Output

Covers

4. Fill in the table below with a test suite that provides path coverage. Before you fill in the table, first
list all the paths to be covered, and label each path (“P1”, “P2”, “P3”, etc.). You need only cover exe-
cutions that involve at most 1 iteration of each loop (if there are any). In the Covers column, list the
path labels covered by each test case.

Paths:

Input Expected
array n Output

Covers

5. Which, if any, of your above three test suites would have caught the bug in the function?

Solutions:

1.

L

A
Suom = O
120
Ap ‘.
=) L

while _1<n hk (< "")"l":,&__,

.
A

C

20 T
33 Trve—

SUM = Syt arrsy [
3 yC

/

2

False

R

5ov

red

&

Input

Expected

array Output En
Lo I A, B c, D

Input Expected

array Output Sz

Lo, 0]

|

Paths:

Pl: 1,2

P2: 1,8,4,2

Input Expected

ar::; N éﬁ:;uet Covers
C 2 o| O Pl
CiJ l l P

5.

The Slatemad=ad brinch= covezge Sutes woold v cevgld e bog

Coot net the peil-aversse ove) .

Problems:

def sum elements_while sum_lt n(array, n)
sum = 0
i=0
while i < array.length
if (sum + array[i]) <= n
sum = sum + array[i]
else
return sum
end
i++
end
return sum

end
Figure 4. Function that sums elements of array in order without skipping any until the sum would become greater than

n. To the best of my knowledge, this function is correct.

Draw a control-flow graph (CFG) for the function in Figure 4. In addition to the usual CFG features,
label the nodes with capital letters (A, B, C, etc.), and label the edges with numbers (1, 2, 3, etc.).

Don’t forget to include entry and exit points.

L.

Use the CFG you created for the function in Figure 4 to answer the following questions.

2. Fill in the table below with a test suite that provides statement coverage. In the Covers column, list
the letter labels (A, B, C, etc.) of the nodes covered by each test case.

Input Expected
array n Output

Covers

3. Fill in the table below with a test suite that provides branch coverage. In the Covers column, list the
number labels (1, 2, 3, etc.) of the edges covered by each test case (only true/false edges needed).

Input Expected
array n Output

Covers

4. Fill in the table below with a test suite that provides path coverage. Before you fill in the table, first
list all the paths to be covered, and label each path (“P1”, “P2”, “P3”, etc.). You need only cover exe-
cutions that involve at most 1 iteration of each loop (if there are any). In the Covers column, list the
path labels covered by each test case.

Paths:

Input Expected
array n Output

Covers

5. Imagine if the line “1++” was accidentally deleted from the function in Figure 3. Which, if any, of
your above three test suites would catch this bug?

Solutions:

1.

@)

o

Al sum=0]
e

§

B while 1< amay. lengtl, K \
2 e \
\

"l (svom + amyCid) < n
Rl hve

_ |
3 |false 5| fise Drfév_% Suw + army£0d] 7[
Y
else

vehorn som | /
) N 7
T E—7 -

M /
! retura Sum | ./

Input Expected

Covers
array n Output

L] 2 l A, B C,D F G

[21 | O | A B,ccE

Input Expected

Covers
array n Output

L] 2 | 2,3, 4

C27 l o) 2,5

Paths:

| o
L3 | O Pi

Lz2] I O P2

CiJd 2 I P3

Al three test suites wovld have g.gﬁ s evrer

