
Problem: Draw a control flow diagram for this function. Label each edge with an uppercase letter.

int funWithNumbers(int a, int b) {
 if (a > b) {
 while (a >= b) {
 a -= 1;
 b += 1;
 }
 } else {
 b += a;
 }
 return b;
}

Solution:

Problem: Fill in the table below with a test suite that provides path coverage of the code from the previ-
ous question. Cover no more than 2 iterations of the loop. In the covers column, list the relevant labeled
items in your CFG that each test case covers. If there is some part of the coverage that is impossible to
cover, then list it in the covers column, and put “N/A” in the associated x and y cells. Some cells in the
table may be left blank.

Input Covers x y

Solution:

Problem: Draw a control flow diagram for this function. Label each node in the graph with a capital let-
ter, and label each edge with a lowercase letter.

int blammo(int u, int v) {
 int t;
 while (v != 0) {
 t = u;
 u = v;
 v = t % v; // Recall that % computes remainder of t/v
 }
 if (u < 0) { return –u; }
 return u;
}

Solution:

Problems:

1. Fill in the table below with a test suite that provides statement coverage of the “blammo” code. In the
covers column, list the relevant labeled items in your CFG that each test case covers. Some cells in
the table may be left blank.

Input Covers u v

2. Fill in the table below with a test suite that provides path coverage of the “blammo” code. Cover no
more than 1 iteration of the loop. In the covers column, list the relevant labeled items in your CFG
that each test case covers. Some cells in the table may be left blank.

Input Covers u v

Solutions:

1.

2.

Problem: Draw a control-flow graph for the following function. Label each edge in the graph with an
uppercase letter.

Solution:

Problem: Fill in the table below with a test suite that provides path coverage of the min_of_three
function from the previous question. In the covers column, list the relevant labeled edges in your CFG
that each test case covers. Some cells in the table may be left blank.

Input Expected
Output Covers x y z

Solution:

Consider the following control-flow graph for a gcd function in answering the questions below.

H

Problem: Fill in the table below with a test suite that provides condition coverage of the gcd function
(see control-flow graph above). In the Covers column, list the relevant labeled edges in the CFG that each
test case covers. Some cells in the table may be left blank.

Input Expected
Output Covers x y

Problem: Fill in the table below with a test suite that provides path coverage of the gcd function (see
control-flow graph above). In the Covers column, list the relevant labeled edges in the CFG that each test
case covers. Some cells in the table may be left blank. You need only cover executions that involve 1 iter-
ation of the loop.

Input Expected
Output Covers x y

Solution: Condition Coverage

Solution: Path Coverage

Consider this binary-search function and its associated control-flow graph.

True

True

True

False

False

False

Problems:

Consider the following test cases for the binary_search function.

 array key imin imax
a. [1] 0 0 0
b. [1] 1 0 0
c. [1] 1 1 0
d. [1, 2, 3] 1 0 2
e. [1, 2, 3] 2 0 2
f. [1, 2, 3] 3 0 2
g. [1, 2, 3] 1 2 0
h. [1, 2, 3] 2 2 0
i. [1, 2, 3] 3 2 0

1. Select tests from the above to create a test suite that provides statement coverage of the bina-
ry_search function. Your suite should contain the minimum number of tests to provide the cover-
age.

2. Select tests from the above to create a test suite that provides condition coverage of the bina-
ry_search function. Your suite should contain the minimum number of tests to provide the cover-
age.

3. Select tests from the above to create a test suite that provides path coverage of the binary_search
function. Cover only paths that contain one loop iteration or fewer (i.e., no path should enter the loop
more than once). Your suite should contain the minimum number of tests to provide the coverage.

Solutions:

1.

2.

3.

Problems:

Consider the following test cases for the binary_search function.

 array key imin imax
a. [0] 0 0 0
b. [0] 1 0 0
c. [0] 1 1 0
d. [0] -1 0 0

1. Select tests from the above to create a test suite that provides statement coverage of the bina-
ry_search function. Your suite should contain the minimum number of tests to provide the cover-
age.

2. Select tests from the above to create a test suite that provides condition coverage of the bina-
ry_search function. Your suite should contain the minimum number of tests to provide the cover-
age.

3. Select tests from the above to create a test suite that provides path coverage of the binary_search
function. Cover only paths that contain one loop iteration or fewer (i.e., no path should enter the loop
more than once). Your suite should contain the minimum number of tests to provide the coverage.

Solutions:

1. a, b, d

2. a, b, d

3. a, b, c, d

Consider this figure in answer the following questions.

def find_smallest(array)
 smallest = array[0]
 i = 1
 while i < array.length
 if array[i] < smallest
 smallest = array[i]
 end
 i = i + 1
 end
 return smallest
end

Figure 1. Function that finds the smallest value in an array.

Problem:

Draw a control-flow graph (CFG) for the function in Figure 1. In addition to the usual CFG features, label
the nodes with capital letters (A, B, C, etc.), and label the edges with numbers (1, 2, 3, etc.). Don’t forget
to include entry and exit points.

Solution:

Problems:

Use the CFG you created for the function in Figure 1 to answer the following questions.

1. Fill in the table below with a test suite that provides statement coverage. In the Covers column, list
the letter labels (A, B, C, etc.) of the nodes covered by each test case.

Input Expected
Output Covers array

2. Fill in the table below with a test suite that provides branch coverage. In the Covers column, list the
number labels (1, 2, 3, etc.) of the edges covered by each test case (only true/false edges needed).

Input Expected
Output Covers array

3. Fill in the table below with a test suite that provides path coverage. In the Covers column, list the
number labels (1, 2, 3, etc.) of the edges covered by each test case. You need only cover executions
that involve at most 1 iteration of each loop (if there are any). Before you fill in the table, list all the
paths to be covered.

Paths:

Input Expected
Output Covers array

Solutions:

Multiple solutions are possible. These are just examples of correct solutions.

1.

2.

3.

Consider this figure in answer the following questions.

def average(array)
 sum = 0
 i = 1
 while i < array.length
 sum = sum + array[i]
 i = i + 1
 end
 return sum/array.length
end

Figure 2. Buggy function that computes the average value of an array of numbers.

Problem:

Draw a control-flow graph (CFG) for the function in Figure 2. In addition to the usual CFG features, label
the nodes with capital letters (A, B, C, etc.), and label the edges with numbers (1, 2, 3, etc.). Don’t forget
to include entry and exit points.

Solution:

Problems:

Use the CFG you created for the function in Figure 2 to answer the following questions.

1. Fill in the table below with a test suite that provides statement coverage. In the Covers column, list
the letter labels (A, B, C, etc.) of the nodes covered by each test case.

Input Expected
Output Covers array

2. Fill in the table below with a test suite that provides branch coverage. In the Covers column, list the
number labels (1, 2, 3, etc.) of the edges covered by each test case (only true/false edges needed).

Input Expected
Output Covers array

Solutions:

1.

2.

Problem:

Fill in the table below with a test suite that provides path coverage. In the Covers column, list the number
labels (1, 2, 3, etc.) of the edges covered by each test case. You need only cover executions that involve at
most 1 iteration of each loop (if there are any). Before you fill in the table, list all the paths to be covered.

Paths:

Input Expected
Output Covers array

Solution:

Question:

Which, if any, of your above three test suites would have caught the bug in the function?

Solution:

Problems:

Consider this function.

def is_it_xmas?(month, day)
 if month == 12 && day == 25
 return true
 else
 return false
 end
end

1. Draw a control-flow graph for the function. In addition to the usual CFG features, label the nodes
with capital letters (A, B, C, etc.), and label the edges with numbers (1, 2, 3, etc.).

2. Fill in the table below with a test suite that provides statement coverage. In the Covers column, list
the letter labels (A, B, C, etc.) of the nodes covered by each test case.

Input Expected

Output Covers month day

The function is correct to the best of my knowledge.

3. What change to a line in the function would introduce a bug that your above test suite catches?

4. What change to a line in the function would introduce a bug that your above test suite does not catch?

5. Fill in the table below with a test suite that provides branch coverage. In the Covers column, list the
number labels (1, 2, 3, etc.) of the edges covered by each test case (only true/false edges needed).

Input Expected

Output Covers month day

The function is correct to the best of my knowledge.

6. What change to a line in the function would introduce a bug that your above test suite catches?

7. What change to a line in the function would introduce a bug that your above test suite does not catch?

8. Fill in the table below with a test suite that provides path coverage. In the Covers column, list the
number labels (1, 2, 3, etc.) of the edges covered by each test case. You need only cover executions
that involve at most 1 iteration of each loop (if there are any).

Input Expected

Output Covers month day

The function is correct to the best of my knowledge.

9. What change to a line in the function would introduce a bug that your above test suite catches?

10. What change to a line in the function would introduce a bug that your above test suite does not catch?

Solutions:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Consider this function.

def min_of_three(x, y, z)
 if x < y then
 if x < z then
 return x
 else
 return z
 end
 else
 if y < z then
 return y
 else
 return z
 end
 end
end

1. Draw a control-flow graph for the function. In addition to the usual CFG features, label the nodes
with capital letters (A, B, C, etc.), and label the edges with numbers (1, 2, 3, etc.).

2. Fill in the table below with a test suite that provides statement coverage. In the Covers column, list
the letter labels (A, B, C, etc.) of the nodes covered by each test case.

Input Expected

Output Covers x y z

The function is correct to the best of my knowledge.

3. What change to a line in the function would introduce a bug that your above test suite catches?

4. What change to a line in the function would introduce a bug that your above test suite does not catch?

5. Fill in the table below with a test suite that provides branch coverage. In the Covers column, list the
number labels (1, 2, 3, etc.) of the edges covered by each test case (only true/false edges needed).

Input Expected

Output Covers x y z

The function is correct to the best of my knowledge.

6. What change to a line in the function would introduce a bug that your above test suite catches?

7. What change to a line in the function would introduce a bug that your above test suite does not catch?

8. Fill in the table below with a test suite that provides path coverage. In the Covers column, list the
number labels (1, 2, 3, etc.) of the edges covered by each test case. You need only cover executions
that involve at most 1 iteration of each loop (if there are any).

Input Expected

Output Covers x y z

The function is correct to the best of my knowledge.

9. What change to a line in the function would introduce a bug that your above test suite catches?

10. What change to a line in the function would introduce a bug that your above test suite does not catch?

Solutions:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Problems:

Consider this function.

def gcd(x, y)
 if x == 0
 return y
 end
 if y == 0
 return x
 end
 while x != y
 if x > y
 x = x - y
 else
 y = y - x
 end
 end
 return x
end

1. Draw a control-flow graph for the function. In addition to the usual CFG features, label the nodes
with capital letters (A, B, C, etc.), and label the edges with numbers (1, 2, 3, etc.).

2. Fill in the table below with a test suite that provides statement coverage. In the Covers column, list
the letter labels (A, B, C, etc.) of the nodes covered by each test case.

Input Expected

Output Covers x y

The function is correct to the best of my knowledge.

3. What change to a line in the function would introduce a bug that your above test suite catches?

4. What change to a line in the function would introduce a bug that your above test suite does not catch?

5. Fill in the table below with a test suite that provides branch coverage. In the Covers column, list the
number labels (1, 2, 3, etc.) of the edges covered by each test case (only true/false edges needed).

Input Expected

Output Covers x y

The function is correct to the best of my knowledge.

6. What change to a line in the function would introduce a bug that your above test suite catches?

7. What change to a line in the function would introduce a bug that your above test suite does not catch?

8. Fill in the table below with a test suite that provides path coverage. In the Covers column, list the
number labels (1, 2, 3, etc.) of the edges covered by each test case. You need only cover executions
that involve at most 1 iteration of each loop (if there are any).

Input Expected

Output Covers x y

The function is correct to the best of my knowledge.

9. What change to a line in the function would introduce a bug that your above test suite catches?

10. What change to a line in the function would introduce a bug that your above test suite does not catch?

Solutions:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Problems:

Consider this function.

def binary_search(array, key)
 imin = 0
 imax = array.length - 1
 while imin <= imax
 imid = (imin + ((imax - imin) / 2)).to_i
 if array[imid] == key
 return imid
 elsif array[imid] < key
 imin = imid + 1
 else
 imax = imid - 1
 end
 end
 return -1
end

1. Draw a control-flow graph for the function. In addition to the usual CFG features, label the nodes
with capital letters (A, B, C, etc.), and label the edges with numbers (1, 2, 3, etc.).

2. Fill in the table below with a test suite that provides statement coverage. In the Covers column, list
the letter labels (A, B, C, etc.) of the nodes covered by each test case.

Input Expected

Output Covers array key

The function is correct to the best of my knowledge.

3. What change to a line in the function would introduce a bug that your above test suite catches?

4. What change to a line in the function would introduce a bug that your above test suite does not catch?

5. Fill in the table below with a test suite that provides branch coverage. In the Covers column, list the
number labels (1, 2, 3, etc.) of the edges covered by each test case (only true/false edges needed).

Input Expected

Output Covers array key

The function is correct to the best of my knowledge.

6. What change to a line in the function would introduce a bug that your above test suite catches?

7. What change to a line in the function would introduce a bug that your above test suite does not catch?

8. Fill in the table below with a test suite that provides path coverage. In the Covers column, list the
number labels (1, 2, 3, etc.) of the edges covered by each test case. You need only cover executions
that involve at most 1 iteration of each loop (if there are any).

Input Expected

Output Covers array key

The function is correct to the best of my knowledge.

9. What change to a line in the function would introduce a bug that your above test suite catches?

10. What change to a line in the function would introduce a bug that your above test suite does not catch?

Solutions:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Problems:

def sum_the_first_n(array, n)
 sum = 0
 i = 0
 while i <= n && i < array.length
 sum = sum + array[i]
 i = i + 1
 end
 return sum
end

Figure 3. Buggy function that sums the first n numbers in an array.

1. Draw a control-flow graph (CFG) for the function in Figure 3. In addition to the usual CFG features,
label the nodes with capital letters (A, B, C, etc.), and label the edges with numbers (1, 2, 3, etc.).
Don’t forget to include entry and exit points.

Use the CFG you created for the function in Figure 3 to answer the following questions.

2. Fill in the table below with a test suite that provides statement coverage. In the Covers column, list
the letter labels (A, B, C, etc.) of the nodes covered by each test case.

Input Expected
Output Covers array n

3. Fill in the table below with a test suite that provides branch coverage. In the Covers column, list the
number labels (1, 2, 3, etc.) of the edges covered by each test case (only true/false edges needed).

Input Expected
Output Covers array n

4. Fill in the table below with a test suite that provides path coverage. Before you fill in the table, first
list all the paths to be covered, and label each path (“P1”, “P2”, “P3”, etc.). You need only cover exe-
cutions that involve at most 1 iteration of each loop (if there are any). In the Covers column, list the
path labels covered by each test case.

Paths:

Input Expected
Output Covers array n

5. Which, if any, of your above three test suites would have caught the bug in the function?

Solutions:

1.

2.

3.

4.

5.

Problems:

def sum_elements_while_sum_lt_n(array, n)
 sum = 0
 i = 0
 while i < array.length
 if (sum + array[i]) <= n
 sum = sum + array[i]
 else
 return sum
 end
 i++
 end
 return sum
end
Figure 4. Function that sums elements of array in order without skipping any until the sum would become greater than

n. To the best of my knowledge, this function is correct.

1. Draw a control-flow graph (CFG) for the function in Figure 4. In addition to the usual CFG features,
label the nodes with capital letters (A, B, C, etc.), and label the edges with numbers (1, 2, 3, etc.).
Don’t forget to include entry and exit points.

Use the CFG you created for the function in Figure 4 to answer the following questions.

2. Fill in the table below with a test suite that provides statement coverage. In the Covers column, list
the letter labels (A, B, C, etc.) of the nodes covered by each test case.

Input Expected
Output Covers array n

3. Fill in the table below with a test suite that provides branch coverage. In the Covers column, list the
number labels (1, 2, 3, etc.) of the edges covered by each test case (only true/false edges needed).

Input Expected
Output Covers array n

4. Fill in the table below with a test suite that provides path coverage. Before you fill in the table, first
list all the paths to be covered, and label each path (“P1”, “P2”, “P3”, etc.). You need only cover exe-
cutions that involve at most 1 iteration of each loop (if there are any). In the Covers column, list the
path labels covered by each test case.

Paths:

Input Expected
Output Covers array n

5. Imagine if the line “i++” was accidentally deleted from the function in Figure 3. Which, if any, of
your above three test suites would catch this bug?

Solutions:

1.

2.

3.

4.

5.

