
Consider this function.

def is_it_xmas?(month, day)
 if month == 12 && day == 25
 return true
 else
 return false
 end
end

Draw a control-flow graph for the function. In addition to the usual CFG features, label the nodes with
capital letters (A, B, C, etc.), and label the edges with numbers (1, 2, 3, etc.).

Fill in the table below with a test suite that provides statement coverage. In the Covers column, list the
letter labels (A, B, C, etc.) of the nodes covered by each test case.

Input Expected
Output Covers month day

The function is correct to the best of my knowledge.

What change to a line in the function would introduce a bug that your above test suite catches?

What change to a line in the function would introduce a bug that your above test suite does not catch?

Fill in the table below with a test suite that provides branch coverage. In the Covers column, list the num-
ber labels (1, 2, 3, etc.) of the edges covered by each test case (only true/false edges needed).

Input Expected
Output Covers month day

The function is correct to the best of my knowledge.

What change to a line in the function would introduce a bug that your above test suite catches?

What change to a line in the function would introduce a bug that your above test suite does not catch?

Fill in the table below with a test suite that provides path coverage. In the Covers column, list the number
labels (1, 2, 3, etc.) of the edges covered by each test case. You need only cover executions that involve at
most 1 iteration of each loop (if there are any).

Input Expected
Output Covers month day

The function is correct to the best of my knowledge.

What change to a line in the function would introduce a bug that your above test suite catches?

What change to a line in the function would introduce a bug that your above test suite does not catch?

Consider this function.

def min_of_three(x, y, z)
 if x < y then
 if x < z then
 return x
 else
 return z
 end
 else
 if y < z then
 return y
 else
 return z
 end
 end
end

Draw a control-flow graph for the function. In addition to the usual CFG features, label the nodes with
capital letters (A, B, C, etc.), and label the edges with numbers (1, 2, 3, etc.).

Fill in the table below with a test suite that provides statement coverage. In the Covers column, list the
letter labels (A, B, C, etc.) of the nodes covered by each test case.

Input Expected
Output Covers x y z

The function is correct to the best of my knowledge.

What change to a line in the function would introduce a bug that your above test suite catches?

What change to a line in the function would introduce a bug that your above test suite does not catch?

Fill in the table below with a test suite that provides branch coverage. In the Covers column, list the num-
ber labels (1, 2, 3, etc.) of the edges covered by each test case (only true/false edges needed).

Input Expected
Output Covers x y z

The function is correct to the best of my knowledge.

What change to a line in the function would introduce a bug that your above test suite catches?

What change to a line in the function would introduce a bug that your above test suite does not catch?

Fill in the table below with a test suite that provides path coverage. In the Covers column, list the number
labels (1, 2, 3, etc.) of the edges covered by each test case. You need only cover executions that involve at
most 1 iteration of each loop (if there are any).

Input Expected
Output Covers x y z

The function is correct to the best of my knowledge.

What change to a line in the function would introduce a bug that your above test suite catches?

What change to a line in the function would introduce a bug that your above test suite does not catch?

Consider this function.

def gcd(x, y)
 if x == 0
 return y
 end
 if y == 0
 return x
 end
 while x != y
 if x > y
 x = x - y
 else
 y = y - x
 end
 end
 return x
end

Draw a control-flow graph for the function. In addition to the usual CFG features, label the nodes with
capital letters (A, B, C, etc.), and label the edges with numbers (1, 2, 3, etc.).

Fill in the table below with a test suite that provides statement coverage. In the Covers column, list the
letter labels (A, B, C, etc.) of the nodes covered by each test case.

Input Expected
Output Covers x y

The function is correct to the best of my knowledge.

What change to a line in the function would introduce a bug that your above test suite catches?

What change to a line in the function would introduce a bug that your above test suite does not catch?

Fill in the table below with a test suite that provides branch coverage. In the Covers column, list the num-
ber labels (1, 2, 3, etc.) of the edges covered by each test case (only true/false edges needed).

Input Expected
Output Covers x y

The function is correct to the best of my knowledge.

What change to a line in the function would introduce a bug that your above test suite catches?

What change to a line in the function would introduce a bug that your above test suite does not catch?

Fill in the table below with a test suite that provides path coverage. In the Covers column, list the number
labels (1, 2, 3, etc.) of the edges covered by each test case. You need only cover executions that involve at
most 1 iteration of each loop (if there are any).

Input Expected
Output Covers x y

The function is correct to the best of my knowledge.

What change to a line in the function would introduce a bug that your above test suite catches?

What change to a line in the function would introduce a bug that your above test suite does not catch?

Consider this function.

def binary_search(array, key)
 imin = 0
 imax = array.length - 1
 while imin <= imax
 imid = (imin + ((imax - imin) / 2)).to_i
 if array[imid] == key
 return imid
 elsif array[imid] < key
 imin = imid + 1
 else
 imax = imid - 1
 end
 end
 return -1
end

Draw a control-flow graph for the function. In addition to the usual CFG features, label the nodes with
capital letters (A, B, C, etc.), and label the edges with numbers (1, 2, 3, etc.).

Fill in the table below with a test suite that provides statement coverage. In the Covers column, list the
letter labels (A, B, C, etc.) of the nodes covered by each test case.

Input Expected
Output Covers array key

The function is correct to the best of my knowledge.

What change to a line in the function would introduce a bug that your above test suite catches?

What change to a line in the function would introduce a bug that your above test suite does not catch?

Fill in the table below with a test suite that provides branch coverage. In the Covers column, list the num-
ber labels (1, 2, 3, etc.) of the edges covered by each test case (only true/false edges needed).

Input Expected
Output Covers array key

The function is correct to the best of my knowledge.

What change to a line in the function would introduce a bug that your above test suite catches?

What change to a line in the function would introduce a bug that your above test suite does not catch?

Fill in the table below with a test suite that provides path coverage. In the Covers column, list the number
labels (1, 2, 3, etc.) of the edges covered by each test case. You need only cover executions that involve at
most 1 iteration of each loop (if there are any).

Input Expected
Output Covers array key

The function is correct to the best of my knowledge.

What change to a line in the function would introduce a bug that your above test suite catches?

What change to a line in the function would introduce a bug that your above test suite does not catch?

