
Here are some figures to consider while answering the following questions.

Figure 1. Example page from Music Catalog web app.

Figure 2. config/routes.rb

Figure 3. Output of rake routes command.

Figure 4. app/models/song.rb

Figure 5. db/migrate/20140930033607_create_songs.rb

Figure 6. app/controllers/songs_controller.rb

Figure 7. app/views/songs/index.html.erb

Problem: First consider this figure depicting the Rails MVC architecture.

a"

b"

c" d" e"

f"

g" h"
i"

kl"

m"

n"

o"

p"

q"

j"

Now, given the architectural diagram, think about how the web page in Figure 1 would have come to be
displayed. Fill in each lettered item from the figure (blanks at left) the most appropriate label number (at
right). Note that you will not use all of the label numbers.

a.

1) routes.rb (Figure 2)

2) song.rb (Figure 4)

3) 20140930033607_create_songs.rb (Figure 5)

4) songs_controller.rb (Figure 6)

5) index.html.erb (Figure 7)

6) Ye Olde Internet

7) Rails server

8) Web browser

9) Call to SongsController#index

10) Call to SongsController#show

11) Call to Song::all

12) Data returned by Song::all

13) Call to Song::find

14) Data returned by Song::find

15) Call to CreateSongs#change

16) Data returned from CreateSongs#change

17) Call to index.html.erb (whatever that means)

18) Data returned from index.html.erb

19) Invocation of SQL query

20) Data returned form SQL query

21) HTTP GET request

22) HTTP response

23) Database

b.

c.

d.

e.

f.

g.

h.

i.

j.

k.

l.

m.

n.

o.

p.

q.

Solution:

a. 8

b. 21

c. 1

d. 9

e. 4

f. 11

g. 2

h. 19

i. 23

j. 20

k. 12

l. 17

m. 5

n. 18

o. 22

p. 6

q. 7

Problem: In Figure 1, if you were to click the “Show” link for “Whip It”, this page would display.

Write the ERB file for this page. Assume that a layout, application.html.erb, already exists, so your ERB
need only include the main content being displayed. Your ERB must include the following types of
HTML elements: p and strong.

Solution:

It’s OK to omit line 1.

Problem: Modify the web app such that the page from Figure 1 includes only songs from 1980 or later.
Here are a few hints:

• To create a new array:
o my_array = Array.new

• To add an item to the end of an array:
o my_array.push(my_item)

• To convert a string to an integer:
o my_int = my_string.to_i

Solution:

Here’s one straightforward way to solve the problem by changing SongsController#index (in
songs_controller.rb):

(The rest of the file remains unchanged.)

Problem: Imagine that you wanted to change the web app such that it now stores the name of the song-
writer with each song. Answer the following in plain English.

a. How would you go about updating the web app’s “M” (as in MVC) component?

b. How would you change the “V” files in the above figures?

c. How would you change the “C” files in the above figures?

Solution:

a. To update the model (“M”) component, you would need to create a new migration (similar to Figure
5). A common way to do this would be with this Rails command:

$ rails generate migration AddSongwriterToSongs songwriter:string

This command generates an appropriate migration file. Note that the class name after migration
must be of the form AddXxxToYyy.

b. The view (“V”) files above (i.e., the ERBs) would need to also display the songwriter values by add-
ing appropriate HTML and calls to song.songwriter.

c. In the controller (“C”) file above (song_controller.rb), the song_params method would need to be
updated to account for the :songwriter parameter.

Problem:

Given the Rails MVC architectural diagram below, label each component.

1. ___________________________

2. ___________________________

3. ___________________________

4. ___________________________

5. ___________________________

6. ___________________________

7. ___________________________

8. ___________________________

a"

c" d"

f" he"

b"

g"

Solution:

1. Web Browser

2. Ye Olde Internet

3. Rails Router

4. Controller

5. View

6. Model

7. Rails Server

8. Database

Here are some figures to consider while answering the following questions.

Figure 8. Index page for rental-property web app.

Figure 9. Show-rental page for rental-property web app.

Figure 10. Result of "rake routes" command for rental-property web app.

Figure 11. Rental-property web app file: app/models/rental.rb

Figure 12. Rental-property web app file: app/controllers/rentals_controller.rb

…"and"so"on"…"

Figure 13. Rental-property web app file: app/views/index.html.erb

Problem:

Figures 8–13 pertain to a rental-property web app. Write Ruby code that defines the show method in
Figure 12, and write the ERB code that would produce the page depicted in Figure 9. Assume that a lay-
out, application.html.erb, already exists, so your ERB needs only to include the main content being dis-
played. Your ERB must have the following types of HTML elements: p and strong.

Solution:

Problem:

Why would it violate the SRP to move line 3 from RentalsController (Figure 12) into the begin-
ning of index.html.erb (Figure 13)?

Solution:

Here is a figure to consider while answering the following questions.

Figure 14. Model classes for a point-of-sale system.

Problem:

Create a UML class diagram representing the Figure 14 point-of-sale model classes. Be sure to label all
associations and association ends, and include all multiplicities. Don’t include “id” attributes (objects
have identity by default).

Solution:

Problem:

Consider the following execution of a point-of-sale system with the model in Figure 14. Two users regis-
ter: Alice Zed (azed@memphis.edu) and Bob Young (byoung@memphis.edu). Alice purchases the fol-
lowing things: 2 Bug Zappers ($20 each) and 1 Garden Hose ($12 each). Bob purchases the following
things: 3 Bug Zappers and 1 Spider Spray ($4 each). Later, Alice makes another purchase: 1 Spider
Spray. Create an object diagram that depicts the model objects after this execution.

Solution:

Problem:

Consider this architectural diagram:

For each lettered item, fill in the most appropriate label number.

a. __________

b. __________

c. __________

d. __________

e. __________

f. __________

g. __________

h. __________

i. __________

j. __________

k. __________

l. __________

m. __________

n. __________

1) Ye Olde Internet

2) Invocation of Model Operations

3) Rails Controller

4) Rendering of View

5) SQL Queries

6) Relational Database

7) HTTP Response

8) Rails Server

9) Web Browser

10) Rails Router

11) Invocation of Controller Action

12) Rails View

13) HTTP Request

14) Rails Model

a"

b"

c" d"

e"

f"g"h"

i"

j"

k"l"

m"

n"

Solutions:

The questions on the following pages refer to the example figures below. The figures show different as-
pects of a WeddingHelper web app that helps a wedding planner keep track of which guests have been
sent invitations and thank-you letters, and what gifts the couple received from each guest. Because each
correspondence (e.g., invitation) is often sent to a household of multiple people (such as a married couple)
and each gift typically comes from all the people in a household, the system organizes the guests as a set
of households, each made up of one or more people.

The system has three model classes, Household, Person, and Gift (see Figure 15) and a controller class for
each (not shown). Figure 16 and Figure 17 show what the index pages for households and gifts, respec-
tively, look like. Figure 18 and Figure 19 show the ERB code for each index page (partially elided in the
case of Figure 19). Figure 20 shows partially elided test code for the Person model class, and Figure 21 a
form for creating a new person. (Note that Rails knows that the plural of person is people.)

Figure 15. Model classes for Wedding Helper web app.

Figure 16. Index page for households.

Figure 17. Index page for gifts. Note that the “Description” attribute happens to have been left empty in all cases.

Figure 18. View code for households index page.

Figure 19. Partially elided view code for gifts index page.

Fillinthis$code$

Figure 20. Model test case with elided code.

Figure 21. Form for creating a new person.

Fillinthis$code$

Problem:

Draw a UML class diagram that represents the model classes given in Figure 15. Be sure to label all asso-
ciations and association ends, and include all multiplicities. Don’t include “id” attributes (objects have
identity by default). You may also omit the datetime attributes.

Solution:

Problem:

Write the missing ERB code in Figure 19 such that it renders pages that look like Figure 17. Do not hard
code values. Rather, they should come from an @gifts object that was passed to the ERB. In particular,
@gifts is an array of Gift objects.

Solution:

Problems:

1. In the household index view, @households is an array of all the household objects. In what method
was that array populated? Give the class name and method name. (These aren’t shown anywhere in
this exam, but you should be able to make a sensible guess.)

2. Fill in the missing test code in Figure 20 such that the test checks that the model class’ validation fea-
tures will catch a missing name. Recall that all Rails model classes have a valid? method, and the
test base class provides assert and assert_not methods.

Solutions:

1.

2.

Multiple-Choice Questions:

1. If you wanted to change the HTTP request URL that maps to a particular controller action, which
Rails component would you need to modify?

a. Controller class

b. Model class

c. Routes class

d. Migration class

e. All of the above

2. Which of the following types of Rails components sets up the database tables?

a. Controller classes

b. Model classes

c. Routes classes

d. Migration classes

e. All of the above

3. What type of HTTP request would be generated by pressing the “Create Person” button in the form in
Figure 21.

a. GET

b. POST

c. PATCH

d. DELETE

e. None of the above

4. After the HTTP request generated by Figure 21 is successfully processed on the server side, what
should the server’s response to the browser be?

a. HTTP response with successful status and accompanying HTML

b. HTTP response with unsuccessful status (404 Not Found) and no HTML

c. HTTP redirect to another URL

d. No response

e. None of the above

Solutions:

1. c

2. d

3. b

4. c

The questions on the following pages refer to these example figures. The figures show different aspects of
the MeetMe web app that enables people to post “meetup” opportunities to “boards”. Each city has its
own board with one person who serves as coordinator.

Figure 22. Model classes for the MeetMe web app.

Figure 23. Test fixture (upper) and test case (lower). [Oops. The test string should say “at least 3 characters”.]

Figure 24. "index" page for the Board model class.

Figure 25. "index" view for the Meetup model class. “Cancel” deletes a meetup, and “Change” links to an edit form.

Figure 26. The form for creating a new meetup.

Problem:

Draw a UML class diagram that represents the model classes given in Figure 22. Be sure to label all asso-
ciations and association ends, and include all multiplicities. Don’t include “id” attributes (objects have
identity by default). You may also omit the “datetime” attributes that Rails provides by default.

Solution:

Draw a UML class diagram that represents the model classes given in Figure 22. Be sure to label all asso-
ciations and association ends, and include all multiplicities. Don’t include “id” attributes (objects have
identity by default). You may also omit the “datetime” attributes that Rails provides by default.

Problem:

Fill in the missing test code in Figure 23 such that the test checks that the model class’ validation will
catch a “where” attribute that has too few characters. Recall that all Rails model classes have a valid?
method, and the test base class provides assert and assert_not methods. Also, you can retrieve a
model fixture object with a line like this:

 subway = meetups(:subway)

Solution:

Fill in the missing test code in Figure 23 such that the test checks that the model class’ validation will
catch a “where” attribute that has too few characters. Recall that all Rails model classes have a valid?
method, and the test base class provides assert and assert_not methods. Also, you can retrieve a
model fixture object with a line like this:

 subway = meetups(:subway)

Problem:

Write the missing ERB code in Figure 25 such that it renders pages that look like the page depicted in the
figure. Do not hard code values. Rather, they should come from an @meetups object that is passed to the
ERB. In particular, @meetups is an array of Meetup objects.

Solution:

Write the missing ERB code in Figure 25 such that it renders pages that look like the page depicted in the
figure. Do not hard code values. Rather, they should come from an @meetups object that is passed to the
ERB. In particular, @meetups is an array of Meetup objects.

Multiple-Choice Questions:

1. What type of HTTP request would be generated by pressing the “Create Meetup” button on the form
in Figure 26.

a. GET

b. POST

c. PATCH

d. DELETE

e. None of the above

2. Which of the following lines of code would the MeetupsController#index action contain?

a. @meetup = Meetup.new

b. @meetup = Meetup.find(params[:id])

c. @meetup = Meetup.new(meetup_params)

d. @meetups = Meetup.all

e. None of the above

3. Which of the following lines of code would the MeetupsController#new action likely contain?

a. @meetup = Meetup.new

b. @meetup = Meetup.find(params[:id])

c. @meetup = Meetup.new(meetup_params)

d. @meetups = Meetup.all

e. None of the above

4. True or false? Controller actions that modify the database (such as the create action) should end by
sending an HTTP redirect response to the browser (instead of rendering an HTML page to send in the
response).

a. True

b. False

Solutions:

1. b

2. d

3. a

4. a

The questions on the following pages refer to the example figures. The figures show different aspects of
the Warrior World web app that is a roleplaying adventure game thematically similar to Dungeons &
Dragons and World of Warcraft. In the game, users play as heroes, each with his/her own back story (e.g.,
land of origin) and special weapons and equipment.

== Schema Information

Table name: heros

id :integer not null, primary key
name :string
race :string
hit_points :integer
created_at :datetime not null
updated_at :datetime not null
home_land_id :integer

class Hero < ActiveRecord::Base
 has_many :equipment
 belongs_to :home_land

 validates :name, presence: true
 validates :race, presence: true
 validates :hit_points, numericality: { greater_than_or_equal_to: 0}
end
== Schema Information

Table name: equipment

id :integer not null, primary key
name :string
description :string
created_at :datetime not null
updated_at :datetime not null
hero_id :integer

class Equipment < ActiveRecord::Base
 belongs_to :hero

 validates :name, presence: true
 validates :description, presence: true
end
== Schema Information

Table name: home_lands

id :integer not null, primary key
name :string
geography :string
created_at :datetime not null
updated_at :datetime not null

class HomeLand < ActiveRecord::Base
 has_many :hero

 validates :name, presence: true
 validates :geography, presence: true
end

Figure 27. Three model classes from Warrior World.

alice:
 name: Alice the Fire Angel
 race: Human
 hit_points: 88

archimonde:
 name: Archimonde the Defiler
 race: Orcs
 hit_points: 108

Figure 28. Test fixture for class Hero.

Figure 29. Hero show page.

Problem:

Draw a UML class diagram that represents the three model classes given in Figure 27. Be sure to label all
associations and association ends, and include all multiplicities. Don’t include any “id” attributes (includ-
ing foreign keys). You may also omit the “datetime” attributes that Rails provides by default.

Solution:

Problem:

Consider the validations in the Hero class (Figure 27) and the Hero fixtures in Figure 28. Using the fol-
lowing lines of code, create a class with two test cases—one that tests that name is present and the other
that tests that hit_points are 0 or greater. You should use all lines at least once, and some lines may be
used more than once.

a) archimonde = heros(:archimonde)
b) test "hit points should be greater than or equal to 0" do
c) test "name should not be empty" do
d) class HeroTest < ActiveSupport::TestCase
e) alice = heros(:alice)
f) assert alice.invalid?
g) end
h) assert archimonde.invalid?
i) archimonde.name = nil
j) alice.hit_points = -1

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

Solutions:

Problem:

Consider the Hero show page in Figure 29. Using the following lines of code, reverse engineer the view
code that produced this page. You should use all lines at least once, and some lines may be used more
than once.

a. <%= @hero.race %>
b. </h2>
c. <%= equipment.name %>
d.
e.
f. <h1><%= @hero.name %></h1>
g. <p id="notice"><%= notice %></p>
h. <% @hero.equipment.each do |equipment| %>
i. from
j. <%= link_to 'Back', heros_path %>
k. (<%= @hero.hit_points %> HP)
l. <% end %>
m. <%= @hero.home_land.name %>
n. Equipment:
o. <h2>
p. </h3>
q. <h3>
r. <%= link_to 'Edit', edit_hero_path(@hero) %> |

1) 10)

2) 11)

3) 12)

4) 13)

5) 14)

6) 15)

7) 16)

8) 17)

9) 18)

Solutions:

Multiple-Choice Questions:

1. Which of the following routes corresponds to the show page in Figure 29?

a) get '/heros', to: 'heros#index', as: 'heros'

b) get '/heros/:id/edit', to: 'heros#edit', as: 'edit_hero'

c) get '/heros/:id', to: 'heros#show', as: 'hero'

d) patch '/heros/:id', to: 'heros#update'

e) post '/heros', to: 'heros#create'

2. Which of the following lines of code would the controller need to execute before rendering the Hero
show view?

a) @heros = Hero.all

b) @hero = Hero.new

c) @hero = Hero.new(params.require(:hero).permit(:name, :race,
:hit_points))

d) @hero = Hero.find(params[:id])

e) None of the above

3. True or false? State-affecting controller actions (such as create, update, and destroy) should always
send an HTTP redirect response instead of rendering a view.

a) True

b) False

Solutions:

1. c

2. d

3. a

Problem:

Consider this architectural diagram in answering the following questions.

1. Which letter in the diagram corresponds to the code in Figure 27?

2. Which letter in the diagram corresponds to test cases?

3. Which letter in the diagram corresponds to view code?

4. Which letter in the diagram corresponds to routes code?

5. Which letter in the diagram corresponds to controller code?

a

c

ih

f

g

d

b

e

Solutions:

1. g

2. e

3. f

4. i

5. h (would also accept g, h)

The questions on the following pages refer to the example figures. The figures show different aspects of
the find-a-dentist web app that helps a patient to find a suitable dentist. Users can use the app to browse
dentists and dental clinics, and to manage dentist and clinic data.

== Schema Information

Table name: clinics

id :integer not null, primary key
location :string
number_of_doctors :integer
created_at :datetime not null
updated_at :datetime not null

class Clinic < ApplicationRecord
 has_many :dentists
end

== Schema Information

Table name: dentists

id :integer not null, primary key
first_name :string
last_name :string
year_born :integer
created_at :datetime not null
updated_at :datetime not null
clinic_id :integer

class Dentist < ApplicationRecord
 has_one :dentist_profile
 belongs_to :clinic
 validates :last_name, presence: true
 validates :year_born,
 numericality: { less_than_or_equal_to:
(Date.today.year - 17) }
end

== Schema Information

Table name: dentist_profiles

id :integer not null, primary key
birthplace :string
major :string
graduationyear :integer
created_at :datetime not null
updated_at :datetime not null
dentist_id :integer

class DentistProfile < ApplicationRecord
 belongs_to :dentist
end

Figure 30. Three model classes from the find-a-dentist app.

one:
 first_name: John
 last_name: Demento
 year_born: 1973

two:
 first_name: Sterling
 last_name: Bloodgush
 year_born: 1969

Figure 31. Test fixture for class Dentist.

Figure 32. Denist index page.

Problem:

Draw a UML class diagram that represents the three model classes given in Figure 30. Be sure to label all
associations and association ends, and include all multiplicities. Don’t include any “id” attributes (includ-
ing foreign keys). You may also omit the “datetime” attributes that Rails provides by default.

Solution:

Problem:

Consider the validations in the Dentist class (Figure 30) and the Hero fixtures in Figure 31. Using the fol-
lowing lines of code, create a class with two test cases—one that tests that first name is present and the
other that tests that the dentist is at least 17 or 18 years in age. You should use all lines at least once, and
some lines may be used more than once.

a) assert_not one.valid?
b) assert_not two.valid?
c) class DentistTest < ActiveSupport::TestCase
d) end
e) one = dentists(:one)
f) one.last_name = nil
g) test "should be at least 17 or 18 years old" do
h) test "should have a last name" do
i) two = dentists(:two)
j) two.year_born = Date.today.year

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

Solution:

Problem:
Consider the Dentist index page in Figure 32. Using the following lines of code, reverse engineer the view
code that produced this page. You should use all lines at least once, and some lines may be used more
than once.

a) <% @dentists.each do |dentist| %>
b) <% end %>
c) <%= link_to 'New Dentist', new_dentist_path %>
d) </table>
e) </tbody>
f) </thead>
g) </tr>
h) <h1>Dentists</h1>
i) <table>
j) <tbody>
k) <td><%= dentist.dentist_profile.major %></td>
l) <td><%= dentist.first_name %></td>
m) <td><%= dentist.last_name %></td>
n) <td><%= dentist.year_born %></td>
o) <td><%= link_to 'Destroy', dentist, method: :delete, data: {

confirm: 'Are you sure?' } %></td>
p) <td><%= link_to 'Edit', edit_dentist_path(dentist) %></td>
q) <td><%= link_to 'Show', dentist %></td>
r) <th colspan="3"></th>
s) <th>First name</th>
t) <th>Last name</th>
u) <th>Major</th>
v) <th>Year born</th>
w) <thead>
x) <tr>

1) 9)

17)

25)

2) 10)

18)

26)

3) 11)

19)

4) 12)

20)

5) 13)

21)

6) 14)

22)

7) 15)

23)

8) 16)

24)

Solution:

Multiple-Choice Questions:

1. Which of the following routes corresponds to the page in Figure 32?

a. get '/dentists', to: 'dentists#index', as: 'dentists'

b. get '/dentists/:id/edit', to: 'dentists#edit',
 as: 'edit_dentist'

c. get '/dentists/:id', to: 'dentists#show', as: 'dentist'

d. patch '/dentists/:id', to: 'dentists#update'

e. post '/dentist', to: 'dentists#create'

2. Which of the following lines of code would the controller need to execute before rendering the view
from Figure 32?

a. @dentists = Dentist.all

b. @dentist = Dentist.new

c. @dentist = Dentist.new(params.require(:dentist).permit(
 :first_name,:last_name, :year_born))

d. @dentist = Dentist.find(params[:id])

e. None of the above

3. True or false? State-affecting controller actions (such as create, update, and destroy) should always
send an HTTP redirect response instead of rendering a view.

a. True

b. False

Solutions:

1. a

2. a

3. a

The questions on the following pages refer to the following example figures. The figures show different
aspects of the beebopdb web app that is a free and open online music database. Users can use the app to
browse and manage data on music artists, albums, and tracks data.

== Schema Information

Table name: artists

id :integer not null, primary key
name :string
year_founded :integer
place_founded :string
about :text
created_at :datetime not null
updated_at :datetime not null

class Artist < ApplicationRecord
 has_many :albums
 validates :year_founded, numericality: { less_than_or_equal_to: Date.today.year }
end

== Schema Information

Table name: albums

id :integer not null, primary key
title :string
year_released :integer
genre :string
artist_id :integer
created_at :datetime not null
updated_at :datetime not null

Indexes

index_albums_on_artist_id (artist_id)

class Album < ApplicationRecord
 belongs_to :artist
 has_many :tracks
 validates :genre, inclusion: { in: ['Rock', 'R&B/HipHop', 'Pop', 'Country', 'Latin'] }
end

== Schema Information

Table name: tracks

id :integer not null, primary key
title :string
track_number :integer
length_seconds :integer
album_id :integer
created_at :datetime not null
updated_at :datetime not null

Indexes

index_tracks_on_album_id (album_id)

class Track < ApplicationRecord
 belongs_to :album
end

Figure 33. Three model classes from the beebopdb app.

one:
 name: LCD Soundsystem
 year_founded: 2002
 place_founded: Brooklyn
 about: LCD Soundsystem is an American rock band from Brooklyn, New York City...

two:
 name: Arcade Fire
 year_founded: 2001
 place_founded: Montreal
 about: Arcade Fire is a Canadian indie rock band, consisting ...

one:
 title: This Is Happening
 year_released: 2010
 genre: Rock
 artist: one

two:
 title: The Suburbs
 year_released: 2010
 genre: Rock
 artist: two

one:
 title: Dance Yrself Clean
 track_number: 1
 length_seconds: 536
 album: one

two:
 title: Ready to Start
 track_number: 2
 length_seconds: 255
 album: two

Figure 34. Test fixtures for the beebopdb model classes.

(a) end
(b) one.genre = 'INVALID'
(c) test "should be invalid genre" do
(d) one = tracks(:one)
(e) assert one.valid?
(f) test "should be valid artist" do
(g) one.year_founded = Date.today.year + 1
(h) test "should be valid album" do
(i) one = artists(:one)
(j) assert_not one.valid?
(k) test "should be valid track" do
(l) test "should be invalid year founded" do
(m) one = albums(:one)

Figure 35. Model unit test lines of code.

Figure 36. Albums index page.

Figure 37. Form for updating an Album.

(a) <tbody>
(b) <table>
(c) <td><%= album.year_released %></td>
(d) <% @albums.each do |album| %>
(e) <% end %>
(f) </tbody>
(g) <tr>
(h) <td><%= link_to 'Show', album %></td>
(i) <%= link_to 'New Album', new_album_path %>
(j) </tr>
(k) <td><%= album.genre %></td>
(l) <th>Title</th>
(m) </table>
(n) <td><%= link_to 'Edit', edit_album_path(album) %></td>
(o) <th>Year released</th>
(p) <h1>Albums</h1>
(q) <td><%= link_to 'Destroy', album, method: :delete, data: { confirm: 'Are you sure?'

} %></td>
(r) <td><%= album.title %></td>
(s) <th colspan="3"></th>
(t) <thead>
(u) </thead>
(v) <th>Genre</th>

Figure 38. Lines of ERB code for the Albums index page.

Problem:

Draw a UML class diagram that represents the three model classes given in Figure 30. Be sure to label all
associations and association ends, and include all multiplicities. Don’t include any “id” attributes (includ-
ing foreign keys). You may also omit the “datetime” attributes that Rails provides by default.

Solution:

Problem:

Consider the model classes in Figure 30 and the fixtures in Figure 31. Using the lines of code in Figure
35, complete the following model test classes such that each model class has test for a valid instance of
the class and such that each validation has a test which demonstrates that the validation catches an invalid
value. You should fill all blanks and use all lines at least once. Some lines may be used more than once.

class ArtistTest < ActiveSupport::TestCase

class AlbumTest < ActiveSupport::TestCase

class TrackTest < ActiveSupport::TestCase

Solution:

Problem:

Consider the Albums index page in Figure 32. Using the lines of code in Figure 38, reverse engineer the
view code that produced this page. You should fill every blank and use all lines at least once. Some lines
may be used more than once.

Solution:

Problem:

It is possible to add an “Artist” column to the Albums index page by inserting two lines of code. What are
the two lines of code, and where should they be inserted in your answer to the previous question?

Solution:

Questions:

1. Which of the following routes corresponds to the form in Figure 37?

a. get '/albums/:id', to: 'albums#show', as: 'album'

b. patch '/albums/:id', to: 'albums#update'

c. post '/album', to: 'albums#create'

d. get '/albums/:id/edit', to: 'albums#edit', as: 'edit_album'

e. get '/albums', to: 'albums#index', as: 'albums'

2. Which of the following lines of code would the controller need to execute before rendering the form
view from Figure 37?

a. @albums = Album.all

b. @album = Album.new

c. @album = Album.find(params[:id])

d. @album = Album.new(params.require(:album).permit(
 :title,:year_released, :genre, :artist_id))

e. None of the above

3. [1pt] True or false? State-affecting controller actions (such as create, update, and destroy) should al-
ways render a view, which produces an HTTP response containing HTML for the browser to display.

a. True

b. False

Answers:

1. d

2. c

3. b

Problem:

Figure 39. Rails architectural diagram.

For each component below, give the corresponding letter from the Rails architectural diagram in Figure
39.

__________ Model

__________ Browser

__________ Model Tests

__________ Controller

__________ Migrations

__________ Internet

__________ Database

__________ View

__________ Router

a

c

ih

f

g

d

b

e

Solution:

The questions on the following pages refer to these example figures. The figures show different aspects of
the CodeGuru web app that helps an individual or company find a suitable software shop or programmer
for their project. Users can use the app to browse software shops and view a shop’s developers and their
backgrounds.

== Schema Information

Table name: shops

id :integer not null, primary key
name :string
location :string
created_at :datetime not null
updated_at :datetime not null

class Shop < ApplicationRecord
 has_many :developers
 validates :name, presence: true
end

== Schema Information

Table name: developers

id :integer not null, primary key
fname :string
lname :string
primary_language :string
shop_id :integer
created_at :datetime not null
updated_at :datetime not null

Indexes

index_developers_on_shop_id (shop_id)

class Developer < ApplicationRecord
 belongs_to :shop
 has_one :developer_profile
 validates :primary_language, inclusion: { in: ['Java', 'Python', 'C#', 'Ruby', 'PHP'] }
end

== Schema Information

Table name: developer_profiles

id :integer not null, primary key
degree :string
school :string
graduation_year :integer
developer_id :integer
created_at :datetime not null
updated_at :datetime not null

Indexes

index_developer_profiles_on_developer_id (developer_id)

class DeveloperProfile < ApplicationRecord
 belongs_to :developer
 validates :graduation_year, numericality: { only_integer: true, less_than_or_equal_to:
 Date.current.year }
end

Figure 40. Three model classes from the CodeGuru app.

one:
 name: Helium
 location: Atlanta, GA

two:
 name: Northwest Independent Ruby Development
 location: Seattle, WA

one:
 fname: John
 lname: Harrington
 primary_language: Java
 shop: one

two:
 fname: Mary
 lname: Baldwin
 primary_language: Ruby
 shop: two

one:
 degree: Masters, Computer Science
 school: University of Chicago
 graduation_year: 2008
 developer: one

two:
 degree: Bachelors, Computer Science
 school: University of Memphis
 graduation_year: 2016
 developer: two

Figure 41. Test fixtures for the CodeGuru model classes.

(a) test "should be valid developer" do
(b) one = developer_profiles(:one)
(c) assert_not one.valid?
(d) test "should be invalid developer_profile" do
(e) test "should be invalid shop" do
(f) one = shops(:one)
(g) one = developers(:one)
(h) test "should be invalid developer" do
(i) one.name = ''
(j) test "should be valid developer_profile" do
(k) end
(l) assert one.valid?
(m) test "should be valid shop" do
(n) one.graduation_year = 2025
(o) one.primary_language = 'Perl'

Figure 42. Model unit test lines of code.

Figure 43. Developers index page.

Figure 44. Form for updating a Developer.

(a) <th>Lname</th>
(b) <table>
(c) </tr>
(d) <tbody>
(e) </table>
(f) <th>Fname</th>
(g) <tr>
(h) </thead>
(i) <thead>
(j) <td><%= link_to 'Destroy', developer, method: :delete, data: { confirm: 'Are you

sure?' } %></td>
(k) <th colspan="3"></th>
(l) <h1>Developers</h1>
(m) <% end %>
(n) </tbody>
(o) <td><%= developer.primary_language %></td>
(p) <%= link_to 'New Developer', new_developer_path %>
(q) <% @developers.each do |developer| %>
(r) <td><%= developer.lname %></td>
(s) <td><%= link_to 'Edit', edit_developer_path(developer) %></td>
(t) <td><%= link_to 'Show', developer %></td>
(u) <th>Primary language</th>
(v) <td><%= developer.fname %></td>

Figure 45. Lines of ERB code for the Developers index page.

Problem:

Draw a UML class diagram that represents the three model classes given in Figure 40. Be sure to label all
associations and association ends and include all multiplicities. Don’t include any “id” attributes (includ-
ing foreign keys). You may also omit the “datetime” attributes that Rails provides by default.

Solution:

Problem:

Consider the model classes in Figure 40 and the fixtures in Figure 41. Using the lines of code in Figure
42, complete the following model test classes such that each model class has test for a valid instance of
the class and such that each validation has a test which demonstrates that the validation catches an invalid
value. You should fill all blanks and use all lines at least once. Some lines may be used more than once.

class ShopTest < ActiveSupport::TestCase

end

class DeveloperTest < ActiveSupport::TestCase

end

(Continued next page…)

class DeveloperProfileTest < ActiveSupport::TestCase

end

Solution:

Problem:

Consider the Developers index page in Figure 43. Using the lines of code in Figure 45, reverse engineer
the view code that produced this page. You should fill every blank and use all lines at least once. Some
lines may be used more than once.

Solution:

Problem:

By inserting two lines of code, it is possible to add a “Shop” column to the Developers index page that
lists the associated shop name for each developer. What are the two lines of code, and where should they
be inserted in your answer to the previous question?

Solution:

Multiple-Choice Questions:

1. Which of the following routes is used to display the form in Figure 44?

a. get '/developers/:id', to: 'developers#show', as: 'developer'

b. patch '/developers/:id', to: 'developers#update'

c. post '/developer', to: 'developers#create'

d. get '/developers/:id/edit', to: 'developers#edit',
as: 'edit_developer'

e. get '/developers', to: 'developers#index', as: 'developers'

2. Which of the following lines of code would the controller need to execute before rendering the form
view from Figure 44?

a. @developers = Developer.all

b. @developer = Developer.new

c. @developer = Developer.find(params[:id])

d. @developer = Developer.new(params.require(:developer).permit(
 :fname,:lname,:primary_language,:shop_id))

e. None of the above

3. True or false? State-affecting controller actions (such as create, update, and destroy) should always
render a view, which produces an HTTP response containing HTML for the browser to display.

a. True

b. False

Solutions:

1. d

2. c

3. b

