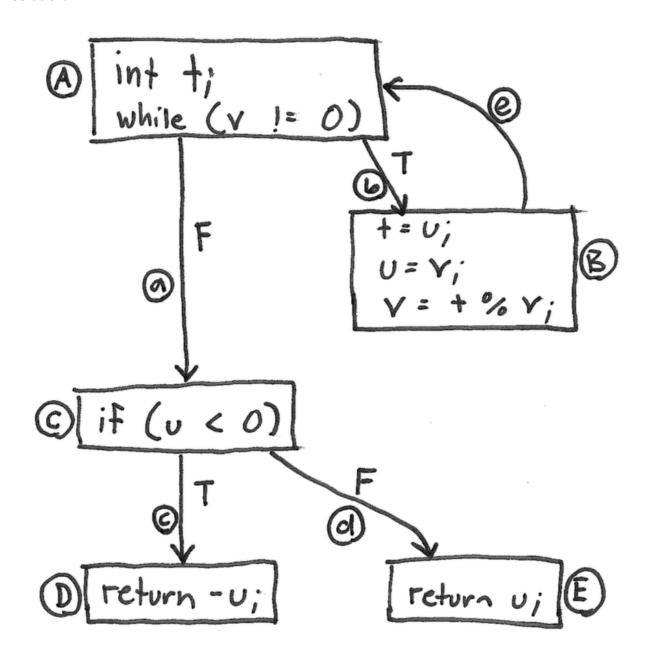

Problem: Draw a control flow diagram for this function. Label each edge with an uppercase letter.

```
int funWithNumbers(int a, int b) {
    if (a > b) {
        while (a >= b) {
            a -= 1;
            b += 1;
        }
    } else {
        b += a;
    }
    return b;
}
```



Problem: Fill in the table below with a test suite that provides *path coverage* of the code from the previous question. Cover no more than 2 iterations of the loop. In the covers column, list the relevant labeled items in your CFG that each test case covers. If there is some part of the coverage that is impossible to cover, then list it in the covers column, and put "N/A" in the associated x and y cells. Some cells in the table may be left blank.

In	put	Covers
X	y	Covers

In	iput	Covers		
X	y	Covers		
1	2	AD		
N/A	N/A	BC		
1	0	BEFC		
4	2	BEFEFC		

Problem: Draw a control flow diagram for this function. Label each node in the graph with a capital letter, and label each edge with a lowercase letter.

```
int blammo(int u, int v) {
  int t;
  while (v != 0) {
    t = u;
    u = v;
    v = t % v; // Recall that % computes remainder of t/v
  }
  if (u < 0) { return -u; }
  return u;
}</pre>
```


Problems:

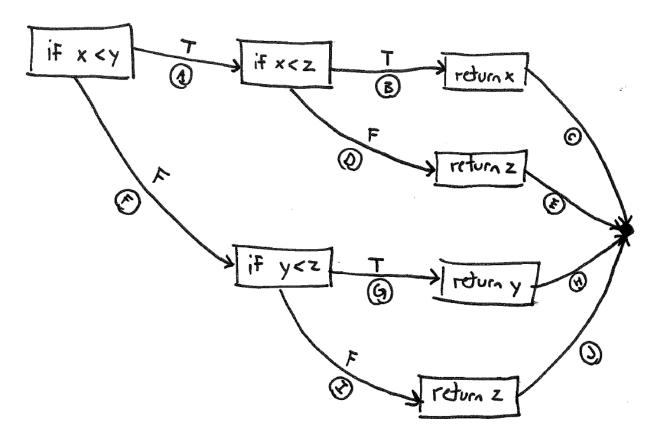
1. Fill in the table below with a test suite that provides <u>statement</u> coverage of the "blammo" code. In the covers column, list the relevant labeled items in your CFG that each test case covers. Some cells in the table may be left blank.

Inj	out	Covers
u	V	Covers

2. Fill in the table below with a test suite that provides <u>path</u> coverage of the "blammo" code. Cover no more than 1 iteration of the loop. In the covers column, list the relevant labeled items in your CFG that each test case covers. Some cells in the table may be left blank.

In	put	Covers		
u	V	Covers		

1.

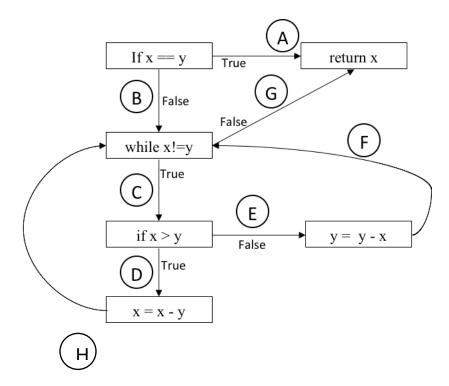

In	put	Coviens		
u	V	Covers		
2	2	A, B, C, E		
-1	0	A, c, D		
		·		

2.

· Inj	out	Covers		
u	V	Covers		
-1	0	۵, ۷		
0	0	a, d		
-2	-2	6, e, a, c		
2	2	b.e, a, d		

Problem: Draw a control-flow graph for the following function. Label each edge in the graph with an uppercase letter.

```
def min_of_three(x, y, z)
  if x < y then
    if x < z then
      return x
  else
      return z
  end
  else
    if y < z then
      return y
  else
      return z
  end</pre>
```



Problem: Fill in the table below with a test suite that provides <u>path coverage</u> of the min_of_three function from the previous question. In the covers column, list the relevant labeled edges in your CFG that each test case covers. Some cells in the table may be left blank.

	Input		Expected Output	Covers	
X	У	Z	Output	Covers	

	Input		Expected	Covers	
X	у	Z	Output	Covers	
1	2	2	(Suscess	A, B, C	
2	3	l	١	A, D, E	
2	1	2		F, G, H	
3	2	1		F, I, J	

Consider the following control-flow graph for a gcd function in answering the questions below.

Problem: Fill in the table below with a test suite that provides <u>condition coverage</u> of the gcd function (see control-flow graph above). In the Covers column, list the relevant labeled edges in the CFG that each test case covers. Some cells in the table may be left blank.

	Input		Covers
X	у	Expected Output	201013

Problem: Fill in the table below with a test suite that provides <u>path coverage</u> of the gcd function (see control-flow graph above). In the Covers column, list the relevant labeled edges in the CFG that each test case covers. Some cells in the table may be left blank. You need only cover executions that involve 1 iteration of the loop.

In	Input		Covers
X	у	Expected Output	Covers

Solution: Condition Coverage

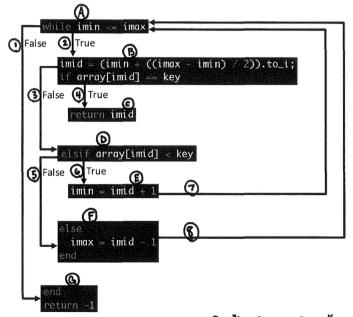
	Ing x	out y	Expected Output	Covers
	l	ı	1	A
	٢	2	١	B, C, E, G
alternative	(2		1	B, C, D, G
alte				
7	3	2		B, C, D, C, E, G

Solution: Path Coverage

In	out	Expected	Covers	
X	у	Output	00.00	
1	1	1	Α	
2	ı	1	B, C, D, H, G	
1	2	1	B, C, E, F, G	
			B, G — not possible	

Consider this binary-search function and its associated control-flow graph.

```
def binary_search(array, key, imin, imax)
  while imin <= imax
    imid = (imin + ((imax - imin) / 2)).to_i;
    if array[imid] == key
        return imid
        elsif array[imid] < key
        imin = imid + 1
        else
        imax = imid - 1
        end
        end
        return -1
end</pre>
```


Problems:

Consider the following test cases for the binary_search function.

	arra	ay		key	imin	imax
a.	[1]			0	0	0
b.	[1]			1	0	0
c.	[1]			1	1	0
d.	[1,	2,	3]	1	0	2
e.	[1,	2,	3]	2	0	2
f.	[1,	2,	3]	3	0	2
g.	[1,	2,	3]	1	2	0
h.	[1,	2,	3]	2	2	0
i.	[1,	2,	3]	3	2	0

1.	Select tests from the above to create a test suite that provides <u>statement</u> coverage of the bina-ry_search function. Your suite should contain the minimum number of tests to provide the coverage.
2.	Select tests from the above to create a test suite that provides <u>condition</u> coverage of the <u>bina-ry_search</u> function. Your suite should contain the minimum number of tests to provide the coverage.

3. Select tests from the above to create a test suite that provides <u>path</u> coverage of the binary_search function. Cover only paths that contain one loop iteration or fewer (i.e., no path should enter the loop more than once). Your suite should contain the minimum number of tests to provide the coverage.

	array		key	imin	imax	Statements Covered	Edges [®] Covered
a.	[1]		0	0	0	ABDFAG	23581
b.	[1]		1	0	0	ABC	24
c.	[1]		2	0	0	ABDEAG	23671
d.	[1, 2,	3]	1	0	2	ABDFABC	235824
e.	[1, 2,	3]	2	0	2	ABC	24
f.	[1, 2,	3]	3	0	2	ABDEABC	236724
g.	[1, 2,	3]	1	2	0	AG	ı
h.	[1, 2,	3]	2	2	0	AG	1
i.	[1, 2,	3]	3	2	0	AG	1

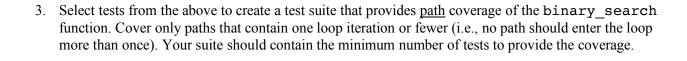
_____a, F or c, d ____(Need to cover statements A, B, C, D, E, F, G)

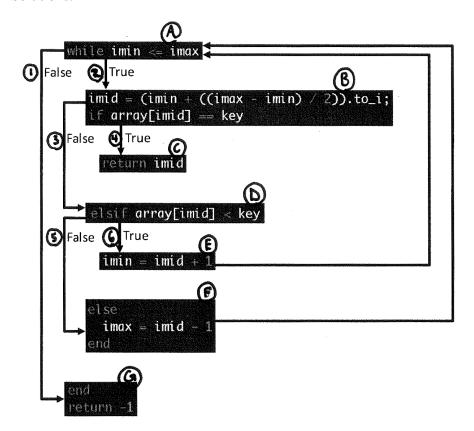
2.

a, F or c, d

(Need to cover edges 1, 2, 3, 4, 5, 6)

3. (alhli), (ble), c. a	6	
	Possible paths	Tests that cover
Any 1 of Any 1 of	24	5,h,i
these these	23611	c


Problems:


Consider the following test cases for the binary_search function.

	array	key	imin	imax
a.	[0]	0	0	0
b.	[0]	1	0	0
c.	[0]	1	1	0
d.	[0]	-1	0	0

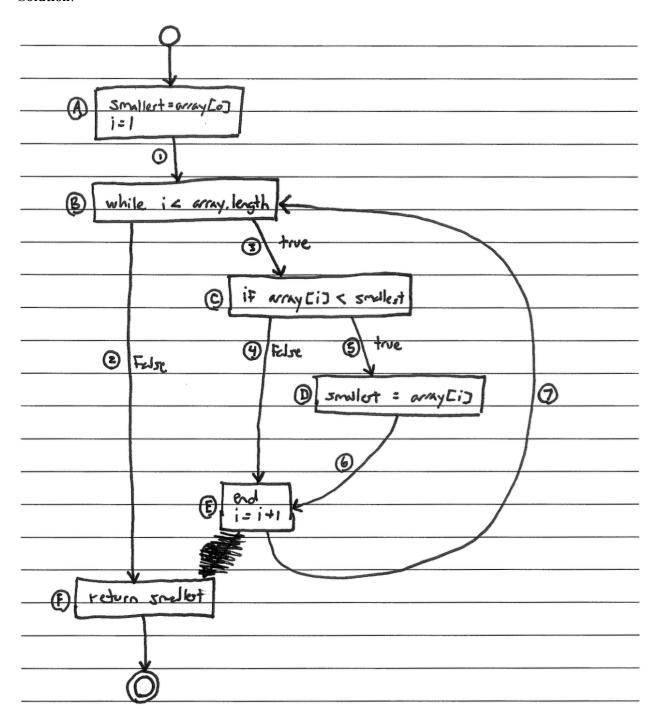
1.	Select tests from the above to create a test suite that provides <u>statement</u> coverage of the bina-
	ry_search function. Your suite should contain the minimum number of tests to provide the cover-
	age.

2.	Select tests from the above to create a test suite that provides <u>condition</u> coverage of the bina-
	ry_search function. Your suite should contain the minimum number of tests to provide the cover-
	age.

	array	key	imin	imax	Statements Covered	Condition Covered
a.	[0]	0	0	0	ABC	24
b.	[0]	1	0	0	ABBEG	2361
c.	[0]	1	1	0	A G	
d.	[0]	-1	0	0	ABDFG	235

Pa	}			************************************	-AK (Athense	Cover	ધ	βy	
A	G					C			
A	B	C				19			
A_	B	D	E	A	G	16			
A	В	D	F	A	G	1 9			

- 1. a, b, d
- 2. a, b, d
- 3. a, b, c, d


Consider this figure in answer the following questions.

```
def find_smallest(array)
  smallest = array[0]
  i = 1
  while i < array.length
    if array[i] < smallest
        smallest = array[i]
  end
  i = i + 1
  end
  return smallest
end</pre>
```

Figure 1. Function that finds the smallest value in an array.

Problem:

Draw a control-flow graph (CFG) for the function in Figure 1. In addition to the usual CFG features, label the nodes with capital letters (A, B, C, etc.), and label the edges with numbers (1, 2, 3, etc.). Don't forget to include entry and exit points.							

Problems:

Use the CFG you created for the function in Figure 1 to answer the following questions.

1. Fill in the table below with a test suite that provides <u>statement coverage</u>. In the Covers column, list the letter labels (A, B, C, etc.) of the nodes covered by each test case.

Input array	Expected Output	Covers

2. Fill in the table below with a test suite that provides <u>branch coverage</u>. In the Covers column, list the number labels (1, 2, 3, etc.) of the edges covered by each test case (only true/false edges needed).

Input array	Expected Output	Covers

number labels (1, 2, 3, etc.) of the edges covered by each test case. You need only cover executions that involve at most 1 iteration of each loop (if there are any). Before you fill in the table, list all the paths to be covered. Paths: Expected Input Covers Output array

3. Fill in the table below with a test suite that provides path coverage. In the Covers column, list the

Multiple solutions are possible. These are just examples of correct solutions.

1.

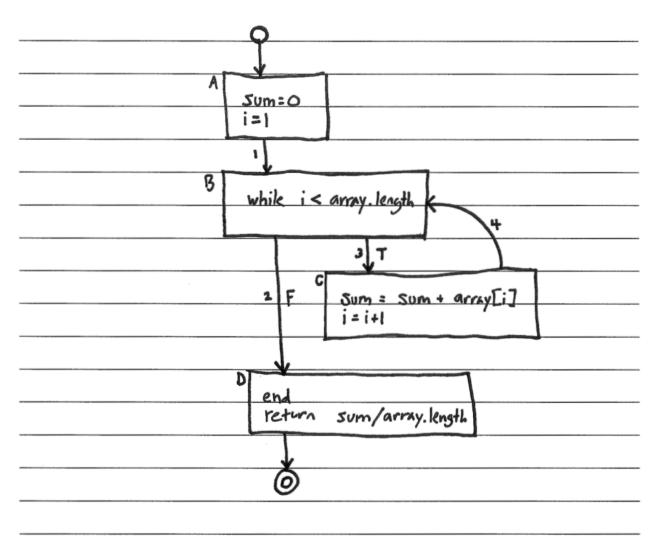
Input array	Expected Output	Covers
[1,0]	0	A, B, C, D, E, B, F

2.

Input array	Expected Output	Covers
[1,0,2]	0	3, 3,5,4,2

3.

Input array	Expected Output	Covers
[o]	0	1,2
[1,0]	0	1,3,5,6,7,2
[0,1]	0	1, 3, 4, 7, 2


Consider this figure in answer the following questions.

```
def average(array)
  sum = 0
  i = 1
  while i < array.length
    sum = sum + array[i]
    i = i + 1
  end
  return sum/array.length
end</pre>
```

Figure 2. Buggy function that computes the average value of an array of numbers.

Problem:

Draw a control-flow graph (CFG) for the function in Figure 2. In addition to the usual CFG features, label the nodes with capital letters (A, B, C, etc.), and label the edges with numbers (1, 2, 3, etc.). Don't forget to include entry and exit points.					

Problems:

Use the CFG you created for the function in Figure 2 to answer the following questions.

1. Fill in the table below with a test suite that provides <u>statement coverage</u>. In the Covers column, list the letter labels (A, B, C, etc.) of the nodes covered by each test case.

Input array	Expected Output	Covers

2. Fill in the table below with a test suite that provides <u>branch coverage</u>. In the Covers column, list the number labels (1, 2, 3, etc.) of the edges covered by each test case (only true/false edges needed).

Input array	Expected Output	Covers

1.

Input array	Expected Output	Covers
בייים	1	A, B, C, D

2.

Expected Output	Covers	
1	3,2	
	Expected Output	

labels (1, 2, 3, etc.) of the edges covered by e	each test case.	overage. In the Covers column, list the number You need only cover executions that involve at fill in the table, list all the paths to be covered.
Paths:		
Input array	Expected Output	Covers
	_	

Problem:

Solution:		
Paths:		
- 1,2		
- 1,2 - 1,3,4,2	 	

Input array	Expected Output	Covers
נים	1	1,2
C1,13	1	1,3,4,2

$\boldsymbol{\Lambda}$		es	. •	_		_
	11	AC.	П	n	n	•

Which, if any, of your above three test suites would have caught the bug in the function?

All of the above test suites would have caught the bug.

Problems:

Consider this function.

```
def is_it_xmas?(month, day)
  if month == 12 && day == 25
    return true
  else
    return false
  end
end
```

1.	Draw a control-flow graph for the function. In addition to the usual CFG features, label the nodes with capital letters (A, B, C, etc.), and label the edges with numbers (1, 2, 3, etc.).

2.	Fill in the table below with a test suite that provides statement coverage. In the Covers column, list
	the letter labels (A, B, C, etc.) of the nodes covered by each test case.

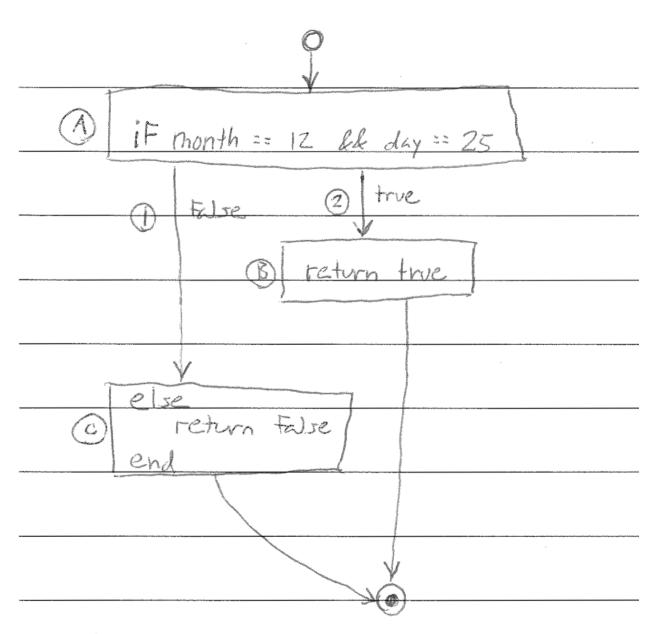
	out	Expected Output	Covers
month	day	Output	

3. What change to a line in the function would introduce a bug that your above test suite catches?

٥.	what change to a line in the function would introduce a bag that your above test saite catelies.
4.	What change to a line in the function would introduce a bug that your above test suite does <u>not</u> catch?

5.	Fill in the table below with a test suite that provides branch coverage. In the Covers column, list the
	number labels (1, 2, 3, etc.) of the edges covered by each test case (only true/false edges needed).

	out	Expected Output	Covers
month	day	Output	


6. What change to a line in the function would introduce a bug that your above test suite catches?
7. What change to a line in the function would introduce a bug that your above test suite does <u>not</u> catch?

8.	Fill in the table below with a test suite that provides <u>path coverage</u> . In the Covers column, list the
	number labels (1, 2, 3, etc.) of the edges covered by each test case. You need only cover executions
	that involve at most 1 iteration of each loop (if there are any).

	out	Expected Output	Covers
month	day	Output	207613

9. What change to a line in the function would introduce a bug that your above test suite catches?

10. What change to a line in the function would introduce a bug that your above test suite does <u>not</u> catch?

In month	put day	Expected Output	Covers
12	24	False	A, C
12	25	true	A, B

3.

In	put	Expected	Covers
month	day	Output	Covers
12	24	False	(
12	25	true	2

6.

Ir month	put day	Expected Output	Covers
	24	False	1
-	25	true	2
			Paths:
			_ 2

Consider this function.

```
def min_of_three(x, y, z)
   if x < y then
      if x < z then
        return x
      else
        return z
      end
   else
      if y < z then
        return y
      else
        return z
   end
   end
   end
end</pre>
```

1.	Draw a control-flow graph for the function. In addition to the usual CFG features, label the nodes with capital letters (A, B, C, etc.), and label the edges with numbers (1, 2, 3, etc.).

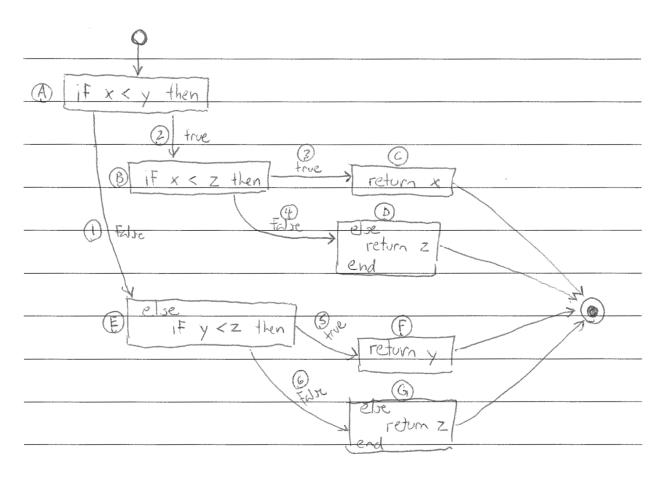
2. Fill in the table below with a test suite that provides <u>statement coverage</u>. In the Covers column, list the letter labels (A, B, C, etc.) of the nodes covered by each test case.

Input		Expected	Covers	
X	у	Z	Expected Output	Covers

3.	What change to a line in the function would introduce a bug that your above test suite catches?
4	What shows to a line in the function would introduce a horathet your shows test suite does not eatable
4.	What change to a line in the function would introduce a bug that your above test suite does <u>not</u> catch?

5. Fill in the table below with a test suite that provides <u>branch coverage</u>. In the Covers column, list the number labels (1, 2, 3, etc.) of the edges covered by each test case (only true/false edges needed).

Input		Expected	Covers	
X	у	Z	Expected Output	Covers


6.	What change to a line in the function would introduce a bug that your above test suite catches?
7.	What change to a line in the function would introduce a bug that your above test suite does <u>not</u> catch?

8.	Fill in the table below with a test suite that provides <u>path coverage</u> . In the Covers column, list the
	number labels (1, 2, 3, etc.) of the edges covered by each test case. You need only cover executions
	that involve at most 1 iteration of each loop (if there are any).

Input		Expected	Covers	
X	у	Z	Expected Output	Covers

9. What change to a line in the function would introduce a bug that your above test suite catches?
10. What change to a line in the function would introduce a bug that your above test suite does <u>not</u> catch?

Solutions:

	Input		Expected	Covers
X	У	Z	Output	
1	2	3	- o de muse de la	A, B, C
ê-innaan	2	0	0	A, B, D
2	**Autorit**	3	a-registation	A, E, F
2	* magazine*	0	0	A, E, G
	·			

٠,	
,	

V	Input		Expected Output	Covers
X	У	Z	Output	
-	Z	3	************************************	2,3
states	2	0	0	2, 4
2	Ì	3	-entail-	1,5
2.	e - 0480	0	0	1,6

-		
O		

7.

	Input		Expected	Covers	
X	У	Z	Output	Covers	
ì	2	3		2,3	
i e	2	0	O	2,4	
2	Ì	3	en, _{sabe} d	# 1,5	
2	· von	0	0	1,6	
				Paths - 2,3 - 2,4	
				-1,5	

\sim	
ч	

 $x < y \rightarrow x > y$

10.

return x -> return y-x

Problems:

Consider this function.

```
def gcd(x, y)
    if x == 0
        return y
    end
    if y == 0
        return x
   end
   while x != y
        if x > y
            x = x - y
        else
            y = y - x
        end
    end
    return x
end
```

1.	Draw a control-flow graph for the function. In addition to the usual CFG features, label the nodes with capital letters (A, B, C, etc.), and label the edges with numbers (1, 2, 3, etc.).

2.	Fill in the table below with a test suite that provides statement coverage. In the Covers column, list
	the letter labels (A, B, C, etc.) of the nodes covered by each test case.

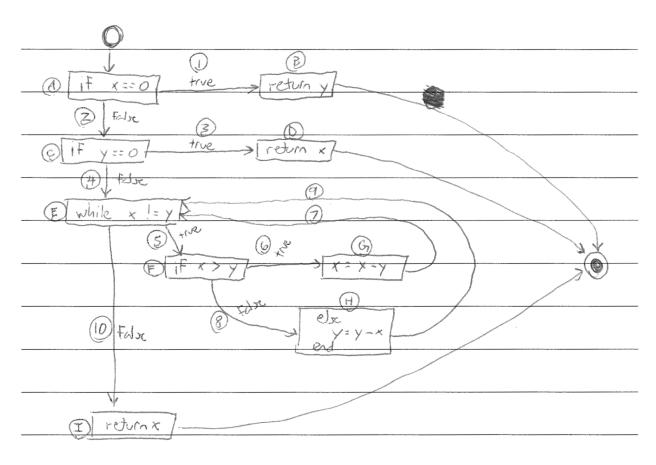
Inj x	out V	Expected Output	Covers
		•	

3.	What change to a line in the function would introduce a bug that your above test suite catches?
4.	What change to a line in the function would introduce a bug that your above test suite does <u>not</u> catch?

5.	Fill in the table below with a test suite that provides branch coverage. In the Covers column, list the
	number labels (1, 2, 3, etc.) of the edges covered by each test case (only true/false edges needed).

	out	Expected Output	Covers
X	у	Output	

6. What change to a line in the function would introduce a bug that your above test suite catches?


7.	What change to a line in the function would introduce a bug that your above test suite does <u>not</u> catch?

8.	Fill in the table below with a test suite that provides <u>path coverage</u> . In the Covers column, list the
	number labels (1, 2, 3, etc.) of the edges covered by each test case. You need only cover executions
	that involve at most 1 iteration of each loop (if there are any).

Input		Expected Covers	Covers
X	y	Output	201013

9.	What change to a line in the function would introduce a bug that your above test suite catches?
10.	What change to a line in the function would introduce a bug that your above test suite does <u>not</u> catch?

Solutions:

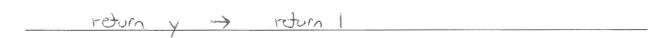
Inj X	out y	Expected Output	Covers
0	-	; -naaante	A, B
- Manual - M	0	·esana	A, C, D
3	2	4 decays	A, C, E, F, G, E, F, H, I

3.

$$y=y-x \rightarrow y=x=1$$

Inp X	out y	Expected Output	Covers
0	de la companya de la		ł.
ı	0	V-water	2,3
3	2		2,4,5,6, \$ 5,8, \$ 10

n	



Input		Expected	Covers
X	у	Output	Covers
O	in the second se	N. Actions parts	
l	0	, pumpe	2,3
l) and the contract of the cont		2,4,10
2	į	N. Salaman	2,4,5,6,7,10
(2	140000	2,4,5,8,9,10

PAJ	15	The Charles of the Ch
озамихер	1	
, estudo	2,3	
, subsuce	2,4,10	
-	2,4,5,6,	7 10
4	2,4,5,8,	7 10

9.

$$\times = 0 \longrightarrow \times > = 0$$

Problems:

Consider this function.

1.	Draw a control-flow graph for the function. In addition to the usual CFG features, label the nodes with capital letters (A, B, C, etc.), and label the edges with numbers (1, 2, 3, etc.).

2.	Fill in the table below with a test suite that provides statement coverage. In the Covers column, list
	the letter labels (A, B, C, etc.) of the nodes covered by each test case.

	put key	Expected Output	Covers
array	кеу	Output	

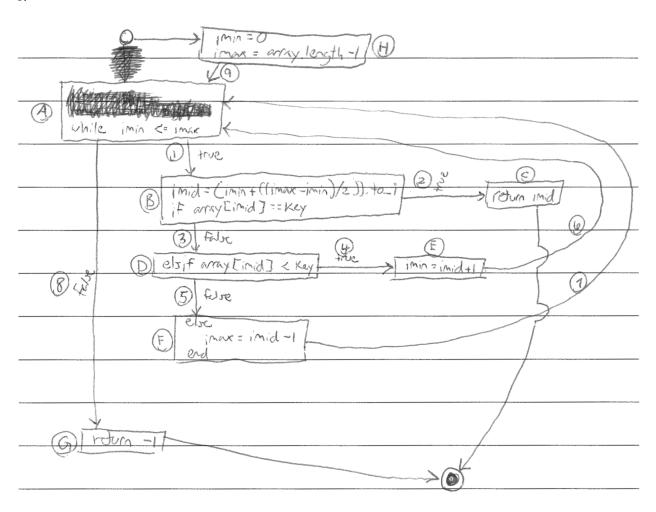
3. What change to a line in the function would introduce a bug that your above test suite catches?

1	What change to a line in the function would introduce a bug that your above test suite does <u>not</u> catch?
т.	what change to a fine in the function would introduce a bug that your above test suite does <u>not</u> eaten:

5.	Fill in the table below with a test suite that provides branch coverage. In the Covers column, list the
	number labels (1, 2, 3, etc.) of the edges covered by each test case (only true/false edges needed).

	put key	Expected Output	Covers
array	кеу	Output	

7. What change to a line in the function would introduce a bug that your above test suite does <u>not</u> catch?


6. What change to a line in the function would introduce a bug that your above test suite catches?

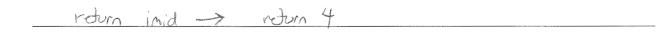
8.	Fill in the table below with a test suite that provides <u>path coverage</u> . In the Covers column, list the
	number labels (1, 2, 3, etc.) of the edges covered by each test case. You need only cover executions
	that involve at most 1 iteration of each loop (if there are any).

	put I.a	Expected Output	Covers
array	key	Output	

9.	What change to a line in the function would introduce a bug that your above test suite catches?
10.	What change to a line in the function would introduce a bug that your above test suite does <u>not</u> catch?

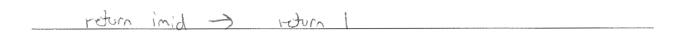
Solutions:

Ing array	Input array key		Covers
	a	(H, A, G
[a,b,c,d,e,f,g]	e	4	H, A, B, D, E, A, B, D, F, A, B, C


3.		
	roturn -1 -> noturn 0	
4.		
	return inid > 17 turn 4	

	Input		Covers	
array	key	Output		
C 3	a)	8	
Ca, b, c, d, e, f, g]	C	4	1,3,4,1,3,5,1,2	
			,	

_			
۲,			
J	•		


7.

Inj	out	Expected	Covers
array	key	Output	
	9	-20000	9, 8,
[9,6,6]	6	- Amazon	9,1,2
[a]	Ь		9,1,3,4,6,8
[6]	a	n, all states and a state of the state of th	9,1,3,5,7,8
			Paths = 9,8 = 9,12
			- 9,1.3,4,6,8 - 9,1,3,5,7,8

\sim	
ч	

Problems:

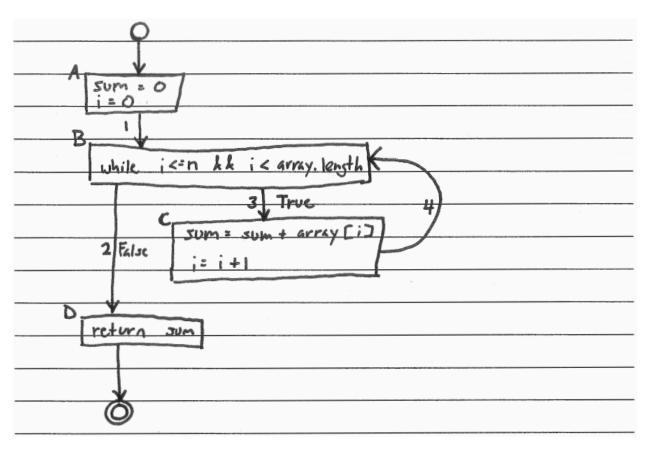
```
def sum_the_first_n(array, n)
    sum = 0
    i = 0
    while i <= n && i < array.length
        sum = sum + array[i]
        i = i + 1
    end
    return sum
end</pre>
```

Figure 3. Buggy function that sums the first *n* numbers in an array.

1.	Draw a control-flow graph (CFG) for the function in Figure 3. In addition to the usual CFG features, label the nodes with capital letters (A, B, C, etc.), and label the edges with numbers (1, 2, 3, etc.). Don't forget to include entry and exit points.

Use the CFG you created for the function in Figure 3 to answer the following questions.

2. Fill in the table below with a test suite that provides <u>statement coverage</u>. In the Covers column, list the letter labels (A, B, C, etc.) of the nodes covered by each test case.


Input	Input		Covers
array	n	Expected Output	Covers

3. Fill in the table below with a test suite that provides <u>branch coverage</u>. In the Covers column, list the number labels (1, 2, 3, etc.) of the edges covered by each test case (only true/false edges needed).

	Expected	Covers
n	Output	Covers
	n	Expected Output

4.	Fill in the table below with a test suite that provides <u>path coverage</u> . Before you fill in the table, first list all the paths to be covered, and label each path ("P1", "P2", "P3", etc.). You need only cover executions that involve at most 1 iteration of each loop (if there are any). In the Covers column, list the path labels covered by each test case.					
Pa	ths:					
	Input array	n	Expected Output	Covers		
	uituy	n .	Carpar			
5.	Which, if any, of your above three	test suites w	vould have cau	ught the bug in the function?		

Solutions:

Input array	n	Expected Output	Covers
[1,1]	graditi)	1	A, B, C, D

Input array n		Expected Output	Covers
[1,1]	1	١	2,3
			·

Paths:				
P1:	1,2			
P2:	1,3,4,2		 	
		1964 - 1964 - 1964 - 1964 - 1964 - 1964 - 1964 - 1964 - 1964 - 1964 - 1964 - 1964 - 1964 - 1964 - 1964 - 1964		
-	MARKET MARKET TO THE TOTAL TO T			
	0.0000000000000000000000000000000000000	,		

Input array		Expected Output	Covers	
	0	0	PI	
			P2	

5.

The statement—and branch—coverage suites would have caught the bug (but not the path-coverage one).