
Problem: Match the design pattern to the situation to which you should apply it.

 ¢ Your application needs to generate HTML files
(from scratch).

Builder ¢ ¢
Your program must support switching among
several different email libraries, but each one has
a slightly different interface.

Memento ¢ ¢ You want to let users create and run macros in-
side your application.

Façade ¢ ¢
Sending an SMS message requires lots of big,
ugly code, involving connection, message, and
other objects.

Adapter ¢ ¢ You want your application to save its state so that
if it crashes, then it can auto-recover.

Interpreter ¢ ¢
Your program has to create and configure some
big, ugly record objects before inserting them
into a database.

Observer ¢ ¢
Your program has to support replication. You
need a way for the program to save its state so
the program can be copied to other servers.

 ¢
Your company already implemented a compo-
nent that almost implements the interface that
you need, but not quite.

Solution:

Problem: Imagine that you are the creator of an “intelligent” kitchen system, RoboChef, that can actually
control different kitchen appliances (e.g., ovens, choppers) to prepare food. Initially, you implemented
RoboChef to use only Electrolux gas ovens. Here is an excerpt of your current software design:

Note that the Electrolux Company provided the software interface for controlling the gas oven (Electro-
luxGasOven), and you created the intelligent decision-making part (RoboChef).   As your next step, you
would like your system to support different types of ovens other than Electolux gas ones. For example,
Maytag and Whirlpool each provide their own software interfaces for their ovens:

Update your current software design to allow easy switching between oven-control systems. Your design
must apply the adapter pattern.

Draw a class diagram for your design.

RoboChef(

…(
…(

ElectroluxGasOven(

…(

+heat(howHot:(Temperature,(
((((((((((((howLong:(Time)(
…(

1(
Econtrols(

MaytagMicrowave-

…-

+cook(seconds:-Integer,-
------------power:-Integer)-
…-

WhirlpoolElectricRange-

…-

+bake(degrees:-Integer,-
------------@me:-Time)-
…-

Solution:

Problem: For each pattern below, draw a line from the pattern to its definition.

Indirection ¢ ¢ Identify points of instability and create a stable
interface around such points.

Low coupling ¢ ¢
Assign a knowing responsibility to the class that
has the information necessary to fulfill the re-
sponsibility.

Information Expert ¢ ¢ Assign responsibilities so that the strength of
connection between objects stays low.

Protected variations ¢ ¢ Assign responsibilities so that an object’s re-
sponsibilities are well focused.

Creator ¢ ¢
One class should have the responsibility to
make instances of another if it “contains”, rec-
ords, or closely uses the other class.

High cohesion ¢ ¢
To decouple two classes, assign the responsibil-
ity of mediating between the two to an interme-
diate object.

Solution:

Problem: Imagine that you are the creator of an “intelligent” autopilot system that can actually fly and
land real airplanes (wow!). Initially, you implemented your system to fly small Cessna airplanes. Here is
an excerpt of your current software design:

Note that the Cessna Aircraft Company provided the software interface for controlling the plane (Cess-
naControls), and you created the intelligent decision-making part (IntelligentPilot).

As your next step, you would like your system to support different types of airplanes other than Cessnas.
For example, Boeing and Airbus each provide their own software control interfaces:

Update your current software design to allow easy switching between control systems. Your design must
apply the adapter pattern.

Draw a class diagram for your design.

What effect did your new design have on the coupling between class IntelligentPilot and class Cess-
naControls.

a. Reduced their coupling

b. Increased their coupling

c. Had no effect on their coupling

IntelligentPilot*

…*
…*

CessnaControls*

…*

+doBarrelRoll()*
…*

1*
7controls*

BoeingCockpitControl.

….

+barrelRollNow().
….

AirbusCtrl.

….

+engageBarrelRoll().
….

Solution:

Problem: Consider the following design for a document-editing system. The Document class represents a
document, and Document objects know how to print themselves using a PostscriptPrinter object.

However, there are other types of printers that a document might want to print itself on, but these printers
have slightly different interfaces than the Postscript printer, for example:

Using the adapter pattern, refactor the design, so that the different types of printers can be easily
swapped in and out.

Draw a design class diagram for your design.

Document)

…)

…)

PostscriptPrinter)

printPS(doc):)PostScriptDoc))
…)

…)printer)

*)

LinePrinter(

doPrint(doc(:(TextData)(
…(

…(

ThreeDPrinter(

renderImage(img(:(Model3D)(
…(

…(

Solution:

Problem:

Match the design pattern to the situation to which you should apply it.

Observer o

Builder o

Adapter o

Mediator o

Memento o

Interpreter o

Facade o

 o Your Pac-Man program needs to listen for presses
of the arrow keys and to update Pac-Man’s position
in the maze accordingly.

o Your program has to create and configure some
big, ugly record objects before inserting them into a
database.

o Your GUI interface has many interrelated buttons
and other widgets (e.g., such that when each button
is pressed many other widgets must be updated).

o You want your application to save its state so that if
it crashes, then it can auto-recover.

o Your program must support switching among sev-
eral different email libraries, but each one has a
slightly different interface.

o You want to let users create and run macros inside
your application.

o Sending an SMS message requires lots of big, ugly
code, involving connection, message, and other ob-
jects.

Solution:

Problem:

Match the design pattern to the situation to which you should apply it.

 ¢ Your application needs to generate large, com-
plex XML files (from scratch).

Builder ¢ ¢

Your program must support switching among
several different database management system
libraries (e.g., MySQL, PostgreSQL, SQLite),
but each one has a slightly different interface.

Façade ¢ ¢
Using a compiler subsystem requires lots of big,
ugly code, involving scanner, parser, byte-code
stream, and other objects.

Adapter ¢ ¢
Your program has to create a complex RTF (Rich
Text Format) document object based on user in-
put.

Observer ¢ ¢

Your application code was written to expect a
TextShape interface; however, the 3rd-party li-
brary provides a TextView object with a slightly
different interface.

Strategy ¢ ¢
Your Call of Duty program needs to listen for
keyboard and mouse clicks to manipulate how a
player character moves, shoots, etc.

 ¢
You need to implement a family of algorithms
such that each algorithm provides a different way
to break a stream of text into lines.

Solution:

Multiple-Choice Questions:

1. Which of the following describes the Adapter Pattern?

a. Builds a complex object using simple objects and using a step by step approach

b. Creates a duplicate object while keeping performance in mind

c. Works as a bridge between two incompatible interfaces

d. Used to decouple an abstraction from its implementation so that the two can vary inde-
pendently

e. None of the above

2. Which of the following is true about design patterns?

a. Represent the best practices used by experienced object-oriented software developers

b. Solutions to general problems that developers commonly face during software development

c. Obtained by trial and error of numerous software developers over a substantial period of time

d. All of the above

e. None of the above

3. Which of the following is true about the Singleton Pattern?

a. A “creational” pattern

b. Responsible for ensuring that no more than one instance of a particular class is created

c. Provides a way to create an instance of a class without directly calling the class’ constructor

d. All of the above

e. None of the above

4. Which pattern automatically notifies dependent objects when a subject object is modified?

a. Adapter

b. Observer

c. Singleton

d. Memento

e. None of the above

5. Which pattern allows incompatible classes to work together by converting the interface of one class
into an interface expected by client?

a. Observer

b. Builder

c. Adapter

d. Memento

e. None of the above

Solutions:

1. c

2. d

3. d

4. b

5. c

Problem:

In the above code, if a customer’s balance drops to 10 or less, an SMSNotifier notifies the customer about
the low bank balance. For each code fragment below, tell where it belongs above.

a. ______ add_observer SMSNotifier.new

b. ______ include Observable

c. ______ withdraw(amount)

d. ______ notify_observers self

e. ______ initialize(owner,amount)

f. ______ update(bank_account)

g. ______ changed

Solution:

a. 4

b. 2

c. 5

d. 7

e. 3

f. 1

g. 6

Problem:

In the above auto-tutor app, when a student submits a quiz, a ResultCalculator calculates the outcome and
displays it. For each code fragment below, tell where it belongs above.

a. ______ changed

b. ______ QuizController

c. ______ add_observer ResultCalculator.new

d. ______ include Observable

e. ______ notify_observers self

f. ______ ResultCalculator

Solution:

a. 4

b. 1

c. 3

d. 2

e. 5

f. 6

Multiple-Choice Questions:

1. When a customer visits a product on eBay and searches the product multiple times, eBay tracks the
search information. Based on this information, eBay sends an SMS notification whenever the
product's cost goes down, or there is a discount available for it. Given the Observer design pattern at
top, which classes in the diagram below would play the roles of Subject and Observer. (Hint: the sys-
tem notifies the customer if there is a change in the cost to the item).

a. Subject: CustomersController and Observer: Item

b. Subject: ItemsController and Observer: SMSNotifier

c. Subject: ItemsController and Observer: Item

d. Subject: CustomersController and Observer: SMSNotifier

e. None of the above

2. A merger happened between two companies, PayPal and Xoom. PayPal used a PostgreSQL database,
whereas Xoom used a MySQL one. Although both types of database have similar interfaces, they are
not quite the same. Given the partially elided class diagram above that applies the Adapter Pattern to
solve this problem, which of the below would be the correct assignment of classes?

a. 1: DatabaseSelector, 2: PayPalAdapter, 3: XoomAdapter, 4: PayPalAdaptee, 5: XoomAdaptee

b. 1: DatabaseSelector, 2: PayPalAdaptee, 3: XoomAdaptee, 4: PayPalAdapter, 5: XoomAdapter

c. 1: DatabaseSelector, 2: PayPalAdapter, 3: XoomAdapter, 4: XoomAdaptee, 5: PayPalAdaptee

d. 1: DatabaseSelector, 2: XoomAdaptee, 3: PayPalAdaptee, 4: PayPalAdapter, 5: XoomAdapter

e. None of the above

Solutions:

1. b

2. a

