
Homework 6: MVC Model Associations
For this homework, you will further refine your team’s web app by adding new model classes
and adding associations between some of the model classes. Additionally, you will continue to
practice with the version-control system, Git.

You will do this homework as a team; however, each member of your team will be responsible
for the completion of a particular task. Each team member will choose one task from the list
below to complete. All team members must do a different task. If your team has only three
members, then ignore Task 4.

The Tasks
Similar to previous homeworks, there will be four tasks (Tasks 1 through 4); however, this time
the tasks are more inter-related. Each task will have the same five parts:

A. Add a new model class (with scaffold, validations, and tests).
B. Add two model associations.
C. Add seed data that uses the associations.
D. Update views/controllers to make use of the associations.
E. Update the home page to link to your newly created pages.

Part A: Add a new model class
Figure 1 (below) depicts a class diagram with the new classes to be added. Each new class is
labeled with the number of the task responsible for creating it. For example, the student doing
Task 1 must create the Journal class; the student doing Task 2 must create the Article class;
etc. The Rails model classes created must match the class diagram exactly (as in Homework 4).
Also, generate the scaffold controller/views for each model class that you create (also as in
Homework 4).

Add one validation per attribute of your newly created class. Also, write one model test for each
attribute that shows that the attribute's validation can catch an invalid value. The choice of
validations and tests is largely up to you, but choose something sensible (i.e., not too weird).

Once you have created your new model class, you will likely want to commit and push it as soon
as possible. In the next part, other students may need to modify your classes to complete their
tasks, so you should do your utmost not to hold them up.

Part B: Add two model associations
Implement two one-to-many associations, as shown in Figure 1 (see below). You must create
the associations labeled with your task number. Your Rails model associations must match the
class diagram exactly—including the role names on the association ends.

Part C: Add seed data
Add seed data as follows. You must have at least three records from the "one" side of each of
your associations, and each of those records must be associated with at least two records from
the "many" side of the association. Thus, for a given association, there will need to be a
minimum of 9 records (3 from the one side + 2 + 2 + 2 from the many side).

In creating the seed data, you may need to coordinate with your teammates to come up with
sensible data given their constraints. To keep the total number of seed objects manageable, it is
OK for you to "share" model objects with teammates in the seeds file. That is, you may count
the same model object toward the objects required for multiple associations.

Part D: Update views/controllers
Using your newly created associations, you must update views/controllers as per the
task-specific requirements below:

● Task 1:
○ Update the TalentAgent show page such that it includes a table listing all the

Actor objects that the TalentAgent object has. The table should be inserted below
the usual TalentAgent show info and be styled like the table in the Actor index
page.

○ Update the Actor index page such that a new column is added to the table. The
column should be titled "Talent Agent", and it should display the last_name
attribute of the TalentAgent object to which the Actor belongs.

○ The Actor new /create and edit /update pages should now include a dropdown
field that allows the user to select the TalentAgent object to which the Actor
object will belong. The text for each item in the dropdown should be the
last_name attribute of the TalentAgent.

● Task 2:
○ Update the Producer show page such that it includes a table listing all the Film

objects that the Producer object has. The table should be inserted below the
usual Producer show info and be styled like the table in the Film index page.

○ Update the Film index page such that a new column is added to the table. The
column should be titled "Producer", and it should display the name attribute of the
Producer object to which the Film belongs.

○ The Film new /create and edit /update pages should now include a dropdown field
that allows the user to select the Producer object to which the Film object will
belong. The text for each item in the dropdown should be the name attribute of
the Producer.

● Task 3:
○ Update the Reviewer show page such that it includes a table listing all the

Review objects that the Reviewer object has. The table should be inserted below
the usual Reviewer show info and be styled like the table in the Review index
page.

○ Update the Review index page such that a new column is added to the table. The
column should be titled "Reviewer", and it should display the handle attribute of
the Reviewer object to which the Review belongs.

○ The Review new /create and edit /update pages should now include a dropdown
field that allows the user to select the Reviewer object to which the Review object
will belong. The text for each item in the dropdown should be the handle attribute
of the Reviewer.

● Task 4:
○ Update the UserProfile show page such that it includes a table listing all the

Comment objects that the UserProfile object has. The table should be inserted
below the usual UserProfile show info and be styled like the table in the
Comment index page.

○ Update the Comment index page such that a new column is added to the table.
The column should be titled "Author", and it should display the name attribute of
the UserProfile object to which the Comment belongs.

○ The Comment new /create and edit /update pages should now include a dropdown
field that allows the user to select the UserProfile object to which the Comment
object will belong. The text for each item in the dropdown should be the name
attribute of the UserProfile.

Part E: Update the home page
Update your hyperlink on the home page so that it now has your name (no hyperlink) followed
by the following two links:

● Task 1:
○ "Actors" linking to Actor index page.
○ "Talent Agents" linking to TalentAgent index page.

● Task 2:
○ "Producers" linking to Producer index page.
○ "Films" linking to Film index page.

● Task 3:
○ "Reviewers" linking to Reviewer index page.
○ "Reviews" linking to Review index page.

● Task 4:
○ "Comments" linking to Comment index page.
○ "User Profiles" linking to UserProfile index page.

How to submit your team’s work
Before you can submit, all team members must have merged their code into the master branch
and pushed the updates to GitHub. If a team member does not complete his/her work on time,
you may submit without his/her contribution.

To submit your team’s work, you must “tag” the current commit in the master branch:

$ git tag -a hw6v1 -m 'Tagged Homework 6 submission (version 1)'
$ git push origin --tags

To grade your work, I will check out the appropriate tag, and run it on my machine.

Note that if for some reason you need to update your submission, simply repeat the tagging
process, but increment the version number (e.g., hw6v2, hw6v3, hw6v4, etc.).

 ↓ Figure Below ↓

Figure 1. Model class diagram and task assignments.

