
Multiple-Choice Questions:

1. SRP is short for:

a. Software Requirements Process

b. Sequential Response Protocol

c. Server Receive Packet

d. Single Responsibility Principle

e. None of the above

2. Which of the following best exemplifies SRP?

a. Writing test code before you write the code under test

b. Creating mock objects to stand in for other objects in the system

c. Dividing each user story to be built next iteration into tasks and assigning each task to a de-
veloper on the team

d. For objects of a class C, creating a DAO (which knows how to read/write C objects to a data-
base) instead of putting all that database accessing logic in the C class

e. Collecting feedback from the customer at the end of each iteration, instead of waiting until
the system is finally delivered

Solution:

1. d

2. d

Short-Answer and Multiple-Choice Questions:

1. What does MVC stand for?

Given these options:

a. Responsible for user interface

b. Responsible for security of the system

c. Responsible for “business logic” and domain objects

d. Responsible for translating between user interface actions/events and operations on the domain
objects

e. None of the above

2. What are the M components in MVC responsible for?

3. What are the V components in MVC responsible for?

4. What are the C components in MVC responsible for?

Solutions:

1. Model-View-Controller

2. c

3. a

4. d

Problem: Does the following design obey the Model-View Separation Principle? Explain your answer.

GuiBu%on(

onClick()(
computeTeamRecord()(
…(

…(

Game(

…(

…(

Team(

…(

…({(
((…(
((this.(computeTeamRecord()(
((…(
}(

games(

**

teams(
* 2

Solution:

Here are some figures to consider while answering the following questions.

Figure 1. Example page from Music Catalog web app.

Figure 2. config/routes.rb

Figure 3. Output of rake routes command.

Figure 4. app/models/song.rb

Figure 5. db/migrate/20140930033607_create_songs.rb

Figure 6. app/controllers/songs_controller.rb

Figure 7. app/views/songs/index.html.erb

Problem: First consider this figure depicting the Rails MVC architecture.

a"

b"

c" d" e"

f"

g" h"
i"

kl"

m"

n"

o"

p"

q"

j"

Now, given the architectural diagram, think about how the web page in Figure 1 would have come to be
displayed. Fill in each lettered item from the figure (blanks at left) the most appropriate label number (at
right). Note that you will not use all of the label numbers.

a.

1) routes.rb (Figure 2)

2) song.rb (Figure 4)

3) 20140930033607_create_songs.rb (Figure 5)

4) songs_controller.rb (Figure 6)

5) index.html.erb (Figure 7)

6) Ye Olde Internet

7) Rails server

8) Web browser

9) Call to SongsController#index

10) Call to SongsController#show

11) Call to Song::all

12) Data returned by Song::all

13) Call to Song::find

14) Data returned by Song::find

15) Call to CreateSongs#change

16) Data returned from CreateSongs#change

17) Call to index.html.erb (whatever that means)

18) Data returned from index.html.erb

19) Invocation of SQL query

20) Data returned form SQL query

21) HTTP GET request

22) HTTP response

23) Database

b.

c.

d.

e.

f.

g.

h.

i.

j.

k.

l.

m.

n.

o.

p.

q.

Solution:

a. 8

b. 21

c. 1

d. 9

e. 4

f. 11

g. 2

h. 19

i. 23

j. 20

k. 12

l. 17

m. 5

n. 18

o. 22

p. 6

q. 7

Problem: In Figure 1, if you were to click the “Show” link for “Whip It”, this page would display.

Write the ERB file for this page. Assume that a layout, application.html.erb, already exists, so your ERB
need only include the main content being displayed. Your ERB must include the following types of
HTML elements: p and strong.

Solution:

It’s OK to omit line 1.

Problem: Modify the web app such that the page from Figure 1 includes only songs from 1980 or later.
Here are a few hints:

• To create a new array:
o my_array = Array.new

• To add an item to the end of an array:
o my_array.push(my_item)

• To convert a string to an integer:
o my_int = my_string.to_i

Solution:

Here’s one straightforward way to solve the problem by changing SongsController#index (in
songs_controller.rb):

(The rest of the file remains unchanged.)

Problem: Imagine that you wanted to change the web app such that it now stores the name of the song-
writer with each song. Answer the following in plain English.

a. How would you go about updating the web app’s “M” (as in MVC) component?

b. How would you change the “V” files in the above figures?

c. How would you change the “C” files in the above figures?

Solution:

a. To update the model (“M”) component, you would need to create a new migration (similar to Figure
5). A common way to do this would be with this Rails command:

$ rails generate migration AddSongwriterToSongs songwriter:string

This command generates an appropriate migration file. Note that the class name after migration
must be of the form AddXxxToYyy.

b. The view (“V”) files above (i.e., the ERBs) would need to also display the songwriter values by add-
ing appropriate HTML and calls to song.songwriter.

c. In the controller (“C”) file above (song_controller.rb), the song_params method would need to be
updated to account for the :songwriter parameter.

	design_srp
	design_mvc
	design_mvc_rails

