
Homework 4: Translation to Java
In this homework, you will complete your RoboLang compiler by adding translation to Java.

Step 1. Check out the project

Before you do this, make sure that you have committed all your Homework 3 work to the SVN
repository.

In your Subversion repository:

1. Create a folder homework4. You should be able to do this using Eclipse’s SVN
Repository Exploring perspective. After you create the folder, your repository should
contain the folders: homework1, homework2, roboc, and homework4.

2. Copy roboc and paste a copy into the homework4 folder.
3. Do Find/Checkout As… on the newly created roboc/ folder in homework4/. This

causes a Check Out As wizard to appear.
4. Select Check out as a project with the name specified:, and enter the name roboc-hw4.

Click Finish.
5. Switch back to the Java perspective. You should now see the roboc-hw4 project in your

Package Explorer.

Don’t forget to do a Maven -> Update Project on the project.

Step 2. Download and run Robocode

Go to http://robocode.sourceforge.net/, download Robocode, and try out the “Getting started”
tutorial. In particular, I recommend you try the following:

• Run a battle between sample.Crazy, sample.Fire, and sample.SpinBot.
• Creating a new robot using the Robocode Robot Editor.
• Test your robot in battle.

The purpose of this step is mainly to familiarize you with Robocode thereby reducing the
difficulty of the subsequent steps.

Step 3. Extend your parser (by writing Java code)

Make your program translate from RoboLang to Java. You may print the Java code to standard
output (i.e., System.out). Caution: The Java code you generate must be free of compile errors! To
test your generated code, copy and paste it into the Robocode Robot Editor and see if it compiles.

Here are a few constraints on how you do the translation:

• The robot name (i.e., the identifier that follows robot at the beginning a robot definition)
in the RoboLang code should be the name of the Java class you generate.

• The main behavior should go in the Java Robot’s run method.

 2

• The alert robot behavior should go in the Java Robot’s onScannedRobot method.
• The alert wall behavior should go in the onHitWall method.
• Many of the reserved words/commands should be translated to their counterpart in

Robocode’s Robot class API: http://robocode.sourceforge.net/docs/robocode/
o You may also need to use the APIs for ScannedRobotEvent and/or

HitWallEvent to implement some instructions.
• All variables should be of Java primitive type double.

Here are some implementation tips/constraints:

• Include your name checker from the previous homework as part of your final solution.
• To add the new translation behavior, just create and run (or rather, walk) another walker

in the main.

Step 4. Submit your work

To submit, simply commit your files to the SVN repository. Feel free to add/commit your test
files as well.

