
Homework 2: RoboLang Parser
For this homework, you will build upon the ANTLR regular expressions you made in Homework
1 to create a parser.

Step 1. Check out the project

I have created you a Subversion repository space at the following URL:

https://utopia.cs.memphis.edu/course/comp4040-2013fall/uuids/YOUR_UUID/

Where you should replace YOUR_UUID with your UUID (i.e., your UofM email name; mine is
sdflming).

In your space, you will find an Eclipse project named homework2. Using Eclipse, checkout this
project.

Within the project are several files:

• RoboLang.g4 – This is where you should create your parser.
• A number of X.robo files – These are input files to use to test your parser.

You should use ANTLRWorks to edit and test your parser.

Be warned that I may test your parser on different input when I grade it! Feel free to create
additional input files.

Step 2. Copy over your regular expressions from hw1

The RoboLang.g4 file will be empty when you check out the homework2 project, and you will
need to copy your regexes from hw1 into the file.

Step 3. Add a few more tokens

You must update your scanner to match on the following three tokens.

Token name Pattern to match Token name Pattern to match
DISTANCE distance RARROW ->
ALERT alert LARROW <-
WALL wall

 2

Step 4. Define the CFG for RoboLang

NOTE: Although I will describe the CFG all at once here, you should figure out a way to
incrementally add and test its features. If you try to implement the CFG in one “big bang”, you
likely to wind up with a big mess on your hands.

Define the CFG for RoboLang as follows.

Robot Declaration

A robo file contains one and only one robot declaration. A robot declaration has this form:

robot robot-identifier ->
 … body of the robot declaration …
<- robot

Note that the above is not written in the form of a CFG production. It’s up to you to figure out
what the productions should be. I will use italics to signify that appropriate text needs to be filled
in.

So, as an example, a robot Bob might be declared like this:

robot Bob ->
 … elided stuff …
<- robot

Note that whitespace characters are basically ignored by this grammar, except in so far as they are
used to separate tokens. Thus, the following would also be a valid way to declare Bob:

robot Bob->… elided stuff …<-robot

And this would also be valid:

robot
Bob
->
… elided stuff …
<-
robot

The body of the robot declaration may contain variable declarations or robot-behavior
declarations.

Variable Declarations

Variable declarations must come first in the body of a robot declaration, and there may be any
number of them. All variables in RoboLang are numbers.

 3

Variable declarations have the following form:

var variable-identifer := arithmetic-expression ;

The assignment part is optional. If the assignment part is omitted, the variable defaults to 0. Thus,
the following are valid variable declarations:

robot Bob ->
 var x ;
 var y := 20 ;
 … elided stuff …
<- robot

Robot-Behavior Declarations

There are several types of robot-behavior declarations:

• The main behavior declaration specifies the robot’s default behavior. There must be one
and only one main declaration

• There are two types of alert behavior declarations, and there may be 0 or 1 of each of
them in the body of the robot declaration:

o The alert robot behavior declaration specifies what the robot should do if it
scans another robot. Scanning happen automatically as the robot’s main behavior
executes.

o The alert wall behavior declaration specifies what the robot should do if it runs
into a wall.

The robot behavior declarations may come in any order, but they must follow the variable
declarations.

Here is an example of what the behavior declarations should look like:

robot Bob ->
 var x ;
 var y := 20 ;

 main ->
 … elided stuff …
 <- main

 alert robot ->
 … elided stuff …
 <- alert

 alert wall ->
 … elided stuff …
 <- alert

<- robot

 4

Robot-Behavior Bodies

The bodies of robot-behavior declarations look similar to most typical imperative programming
languages. Here are some examples.

Assignment)Statement:)
variable-identifier := arithmetic-expression ;

While)Loop:)
while conditional-expression do
 … body statements …
od

Note that do and od are matched. Also note that while loops can contain other while loops.

Branching)Conditional:)
if conditional-expression then
 … body statements …
elsif conditional-expression then
 … body statements …
elsif conditional-expression then
 … body statements …
else
 … body statements …
fi

Note that the if and fi are matched. The if part may be followed by any number of elsif parts and
ended by 0 or 1 else parts

Special)Commands:)
Command Form Comments
ahead ahead arithmetic-expression ; Moves robot ahead by value of

expression.
back back arithmetic-expression ; Moves robot backward by value of

expression.
right right arithmetic-expression ; Turns robot right by value of

expression degrees.
left left arithmetic-expression ; Turns robot left by value of

expression degrees.
fire fire arithmetic-expression ; Fires with strength of value of

expression. Uses that much energy.
energy energy Returns the robot’s current energy

level. Should used as an identifier in
arithmetic expressions.

scan scan ; Forces the robot to scan.

 5

bearing bearing Returns the bearing of a scanned
robot with respect to current robot.
Should be used as an identifier in
arithmetic expressions. May only be
used in the alert robot behavior
body.

noop noop ; Does nothing (“no op”).

Arithmetic)Expressions:)
Follow C/Java syntax for arithmetic expressions. Allow them to contain numbers or identifiers.
Support the following operators: +, -, *, /, (, and).

Conditional)Expressions:)
The while loop and if/elsif statements take conditional expressions. Follow the C/Java syntax for
conditional expressions. Allow them to contain arithmetic expressions (0 evaluates to false and
non-0 evaluates to true), and support the following conditional operators: ||, &&, !, (, and).

Special Notes

• You need not detect the use of undeclared identifiers.
• You must make your grammar unambiguous.
• Your grammar must properly handle operator association and precedence.
• Make sure your grammar continues to support the comments from hw1.

Examples

See the robo files included with homework2 for some examples of the above syntactic elements.

Step 5. Submit your work

To submit, simply commit your completed RoboLang.g4 file to the homework2 project in the
SVN repository. Feel free to add/commit your test files as well.

